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Abstract

The concepts of L-convexity and M-convexity are introduced by Murota (1996)
for functions defined over the integer lattice, and recently extended to polyhedral
convex functions by Murota Shioura (2000). L-convex and M-convex functions are
deeply connected with well-solvability in combinatorial optimization problems with
convex objective functions. In this paper, we consider these concepts for quadratic
functions and the structure of the coefficient matrices of such quadratic functions.
It is shown that quadratic L-convex and M-convex functions can be characterized
by nice combinatorial properties of their coefficient matrices. The conjugacy rela-
tionship between quadratic L-convex and M-convex functions is also discussed.
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1 Introduction

A quadratic function f : R™ — R is defined by an n xn real symmetric matrix
A as

f(z) = %ITAI (x € R"). (1.1)

It is well-known that f is convex if and only if A is positive semidefinite. In this
paper, we consider quadratic convex functions equipped with “combinatorial
structures.” This is tantamount to investigating symmetric matrices with some
combinatorial properties in addition to positive semidefiniteness.

Many different classes of matrices with combinatorial properties have been
investigated in the area of matrix theory. A typical example is the class of
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M-matrices that appear in various areas such as electric engineering, control
engineering [26], numerical analysis [2,28], and mathematical economics [23].
An n xn real matrix A is called an M-matrix if A = s[ — B, where B isan nxn
nonnegative matrix and s is a real number greater than p(B), the maximum
modulus of an eigenvalue of B. In particular, a nonsingular M-matrix is a
matrix such that each off-diagonal component is nonpositive and its inverse is
a nonnegative matrix. An n x n diagonally-dominant symmetric M-matrix A
can be characterized by the following property of a combinatorial nature:

a; <0 (Vi,jeN,i#j), > a; >0 (VieN), (1.2)
j=1
where N = {1,2,...,n}. Note that a symmetric matrix A is called a compart-

mental matrix [1] if —A satisfies the property (1.2). See [4] for mathematical
properties of M-matrices.

The concept of Dirichlet forms is deeply connected with M-matrices. Indeed,
a quadratic function (1/2)z™ Az is a Dirichlet form (of finite dimension) if and
only if A is a diagonally-dominant symmetric M-matrix. The Dirichlet form is
a fundamental tool in probability theory (Markov process, in particular) and
potential theory [5,10]. It is known that a Dirichlet form f(z) = (1/2)z" Az
can be characterized by the following combinatorial property:

f(z) > f((0Ova)Al) (Vz € R"),

where 0 and 1 denote the vectors with all components being equal to zero and
one, respectively, and for any x,y € R" the vectors z Ay,zVy € R" are given
by

(x Ay); = min{z;, y;}, (x Vy); = max{z;, y;} (t=1,2,...,n).

Such a combinatorial property of Dirichlet forms can be seen as a reflection
of the combinatorial structure of diagonally-dominant symmetric M-matrices.
In more physical terms, the Dirichlet form is equivalent to (or represented as)
electrical networks or to random walks. The present study will, hopefully, shed
a new light on these fundamental concepts.

In the area of combinatorial optimization, on the other hand, “combinato-
rial convexity,” i.e., convexity equipped with nice combinatorial properties
has also been investigated (see, e.g., [6-8,15,16,25]). The relationship between
submodular functions and convex functions was made clear through the works
by Frank [7], Fujishige [8], and Lovéasz [15]. Miller [16] and Favati-Tardella
6] investigated classes of “discrete convex” functions defined over the integer



lattice such that local optimality implies global optimality. In particular, prob-
lems with quadratic objective functions are often discussed in the literature
[3,11-14]. Many of those quadratic problems have nice combinatorial structure
and can be solved by efficient combinatorial algorithms. It is also hoped that
the present study provides a common framework for such efficiently solvable
quadratic combinatorial optimization problems.

The concepts of L-convexity and M-convexity are introduced for functions
defined over the integer lattice by Murota [17-19|, with a view to identify-
ing nice combinatorial structure in combinatorial optimization problems with
(general) nonlinear objective functions. Later, the concepts of Li-convexity and
Mt-convexity are introduced by Fujishige-Murota [9] and by Murota—Shioura
[20], respectively, as variants of L-convexity and M-convexity. The concepts
of L-convexity and M-convexity are extended to polyhedral convex functions
defined over the real space by Murota Shioura [21]. Variants of polyhedral
L-convex and M-convex functions, called polyhedral Li-convex and M#-convex
functions, are also introduced in [21].

Although the concepts of L-/Li-convexity and M-/M"-convexity are defined
for polyhedral convex functions, we can naturally extend these concepts to
quadratic functions. This extension provides a nice framework for well-solvable
quadratic combinatorial optimization problems. The main aim of this paper
is to investigate the combinatorial properties of quadratic L-/Lf-convex and
M-/ME-convex functions and the structure of their coefficient matrices. The
results in this paper will be helpful in identifying well-solvable quadratic com-
binatorial optimization problems. Indeed, it can be shown by using our re-
sults that nonseparable quadratic objective functions treated in [11,13] are
quadratic M-convex functions, which explains well-solvability of the quadratic
combinatorial optimization problems in [11,13]. For combinatorial optimiza-
tion problems with quadratic L-/M-convex objective functions, our results will
be useful in developing efficient combinatorial algorithms.

We show that a quadratic function f given by (1.1) is L%-convex if and only
if its coefficient matrix A is a diagonally-dominant symmetric M-matrix. A
similar characterization of a quadratic L-convex function is given in terms of
the sign pattern of the coefficient matrix. As for M-/M!-convexity, we show
that a quadratic function f given by (1.1) with a nonsingular coefficient matrix
A is MP-convex if and only if A satisfies the following combinatorial property:

z'a; > min {O,min z'a;} (Vo € R", Vi € supp™(z)), (1.3)
jAi

where supp(z) = {i € N | 2; > 0} and a; (i € N) denotes the i-th col-
umn vector of A. Moreover, this condition (1.3) turns out to be equivalent
to the inverse of matrix A being a diagonally-dominant symmetric M-matrix.



This reveals a nice conjugacy relationship between quadratic L-convex func-
tions and M!-convex functions expressed in terms of the coefficient matrices,
where the conjugacy means the Legendre-Fenchel conjugacy. The conjugacy
relationship extends to nonquadratic convex functions [22].

We also consider L-/L-convex and M-/M*convex functions defined over Z"
(the integer lattice), and compare them to those over R”. This is to indicate
a subtle difference between the discrete case and the continuous case, espe-
cially with M-convexity. It is shown that the classes of coefficient matrices of
L-/L*-convex functions over Z" coincide with those for R", whereas the coef-
ficient matrices of quadratic M-/M?-convex functions over Z" constitute more
restrictive classes than those for R™.

The organization of this paper is as follows. Definitions and examples of
quadratic L-/Li-convex and M-/M?-convex functions are given in Section 2.
Structures of quadratic L-/Lf-convex and M-/M!-convex functions are inves-
tigated in Section 3, while the proofs are given in Section 6. The conjugacy
relationship between quadratic L-/L%-convex and M-/M?-convex functions are
discussed in Section 4. Characterizations of quadratic L-/L-convex and M-
/M?*-convex functions over Z" are provided in Section 5.

2 Definitions and Examples of Quadratic L-/M-convex Functions

We denote by R the set of reals, and by Z the set of integers. Throughout this
paper, we assume that n is a positive integer, and denote N = {1,2,...,n}. For
any finite set S, its cardinality is denoted by |S|. A family {N;, Na, ..., N, }
of subsets of N is called a subpartition of N if N; N N; = () for any distinct
i,7 € {1,2,...,m}, and a partition if it is a subpartition and U, N; = N.
The characteristic vector of a subset S C N is denoted by xs (€ {0,1}"), i.e.,
(xs)i = 1fori e S and (xg); = 0 for i € N\ S. We denote x; = xq; for
1 € N, in particular. We sometimes denote xo = 0. For z € R” and S C N,
we define 2(S) = ¥,cg 2;, and denote by z[S] € R? the restriction of z to S.
The set of n x n real symmetric matrices is denoted by S,. For A € §,, and
S C N, the principal submatrix of A induced by the index set S is denoted
by A[S]. Given a set of vectors (M), 2, ... (™) € R™ we define

span{z® |i=1,2,....m}={Y a2z |a; €R (i = 1,2,...,m)}.
i=1



For a symmetric matrix B € S,, and a linear subspace K C R", we define a
quadratic function g : R" — R U {+o0} over K by

9(p) = %pTBp e k) (2.1)
+o0o (p ¢ K).

We call such a quadratic function L-convex if it satisfies the properties (LF1)
and (LF2):

(LF1) g(p) +9(q) > g9(pAqg) +9(pVaq) (Vp, ¢ € dom g),
(LF2) 3r € R such that g(p+ A1) = g(p) + A\r (Vp € domg, A € R),

where domg = {p € R" | g(p) < +00}. A quadratic function g : R — R U

{+o0} given by (2.1) is called Li-conver if the function g : RY - RU {400},
where N = {0} U N, defined by

ipop) = g(p—pol)  ((po,p) € RY)

is L-convex. We call a linear subspace K C R" L-convex (resp., LF-conver) if
the indicator function i : R" — {0, +o00} defined by

is L-convex (resp., Li-convex).

Proposition 2.1 (cf. [21, Th. 3.23]) A set K C R" is an L-convez (resp.,
Li-convex) linear subspace if and only if K = span{xy, | k =1,2,...,m} for
some partition (resp., subpartition) {Ny | k=1,2,...,m} of N.

For a symmetric matrix A € §,, and a linear subspace H C R", we define a
quadratic function f: R"™ — R U {400} over H by

Lo
Fa) = 5% Az (x € H), 22)
+oo  (x ¢ H).



We call such a quadratic function M-convex if it satisfies the property (M-
EXC):

(M-EXC) Vz,y € dom f, Vi € supp™ (z — y), 37 € supp™ (z — y), Jap > 0:

f@)+fy) = flz —alu —x5)) + Fly+alu—x;5))  (Ya € (0, a),

where supp®(z) = {t € N | z; > 0} and supp (2) = {t € N | z; < 0} for
z € R™. A quadratic function f : R” — R U {400} given by (2.2) is called
M?-convez if the function f: RN — R U {400}, where N = {0} U N, defined
by

fA.($o,l’) _ f(l’) (‘IO = —l‘(N)), ((IO,I) c Rﬁ)

+oo (otherwise)

is M-convex. Also, we call a linear subspace M-convex (resp., Mi-convex) if its
indicator function is M-convex (resp., Mi-convex).

Proposition 2.2 (cf. [21, Th. 3.3]) A set H C R" is an M-convez (resp.,
Ms-convex) linear subspace if and only if there exists a partition (resp., sub-
partition) {Ny | k = 1,2,...,m} of N such that H = {z € R" | x(Ny) =
0(k=1,2,...,m)}.

Example 2.3 Quadratic M-/L-convex functions arise from electrical networks
with linear resistors. Consider an electrical network with a branch set A and
a node set V', and suppose that terminal set 7" C V', a current source vector
x € R, and a potential vector p € R are given. We denote the resistance
of branch a € A by R,, the potential at node v € V' by p,, the voltage across
branch a € A by 7n,, and the current in branch a € A by &,. The current
vector £ = (€, | a € A) satisfies Kirchhoff’s current law (KCL) for =, which is
represented as

> {&, | branch a leaves v} — > {&, | branch a enters v}
z, (VeT),
0 (veV\T).

The voltage vector n = (n, | a € A) satisfies Kirchhoff’s voltage law (KVL)
for p, expressed as the existence of a potential p € RY such that p, = p, for
v € T and n, = p, — p, for every branch a = (u,v) € A. Then, the power
(energy) consumed in the electrical network with current source z € R is



represented as

f(z) =min{})_ %Ra&f | € satisfies KCL for z},

a€A

whereas the power consumed with potential p € R is represented as

g(p) = min{ >

acA

1, )
TR | n satisfies KVL for p}.

It can be shown that f is quadratic M-convex and ¢ is quadratic L-convex.
Moreover, this construction with nonlinear resistors yields general (nonquadratic)
M- and L-convex functions; see [22]. O

Example 2.4 In [11,13] it is shown that total weighted tardiness scheduling
problems with high multiplicity can be reformulated as integer programs with
quadratic objective functions, where such quadratic functions are given by
coefficient matrices A = (a;;); jen of the form

Gjj = Wmax{ij} (i, EN)

for some wy; > wqy > - -+ > w,. This shows that the quadratic functions treated
in [11,13] are M-convex functions over the integer lattice (see Section 5). O

3 Results

We describe the main theorems of this paper. The proofs are given in Section

6.
3.1  Quadratic L-convex/Lf-convex Functions

3.1.1 L-convex Functions

We first consider a special case where the function g is defined over the entire
space R™:

glp)==p'Bp  (peR"). (3.1)

The coefficient matrix of such a quadratic L-convex function has a simple sign
pattern.



Theorem 3.1 A quadratic function g : R — R given by (3.1) with B € S,
is L-convex if and only if

1

n

J

Proof. (LF1) is equivalent to the local submodularity:

g+ xu) + 9+ px;) = g(p) +g(p + Axi + px;)
(pERn, i7j€N7 i#]) )\7!1’20)7

which can be rewritten as the former property in (3.2); (LF2) is equivalent to
the latter in (3.2). O

As is well known, any matrix satisfying (3.2) is positive semidefinite [2,28].
Therefore, quadratic L-convex functions of the form (3.1) are convex functions
in the ordinary sense. Noting that the matrix B satisfying (3.2) is singular,
i.e., tank B < n — 1, we denote

L= |J{B €S, | function (3.1) over R™ is L-convex, rank B =n — 1},

n=1

L= |J{B €8, | function (3.1) over R™ is L-convex}.

n=1

We next reveal the block-diagonal structure of matrices in L.

Theorem 3.2 A matriz B € S, belongs to L if and only if B is a block-
diagonal matriz w.r.t. some partition of {Ny | k =1,2,...,m} of N such that
B[Nyl € £ (k=1,2,...,m), where m =n — rank B.

Here, a block-diagonal matrix B w.r.t. a (sub)partition {Ny | k =1,2,...,m}
of N means that all entries in B are equal to zero except for those in principal
submatrices B[Ny] (k= 1,2,...,m).

We then consider an L-convex function of the general form (2.1) involving a
subspace K.

Theorem 3.3 Let B € S, and K C R" be a linear subspace. Then, a
quadratic function g : R" — R U {400} over K, given by (2.1), is L-convex
if and only if K = span{xn, | ¥ = 1,2,...,d} for some partition {Ny |
k=1,2,...,d} of N and the “aggregated” matriz B € 8, defined by by =
Yien, 2jen, bij belongs to L. where d = dim K.



3.1.2 LA-convexr Functions

Based on the definition of Li-convexity, Theorems 3.1, 3.2, and 3.3 above for
L-convex functions can easily be rephrased for Li-convex functions as follows.
We denote

o0

Lf=|J{B € S, | function (3.1) over R™ is Li-convex, rank B = n},
n=1

L= J{B € S, | function (3.1) over R" is L-convex}.
n=1

Theorem 3.4 A quadratic function g : R" — R given by (3.1) with B € S,
is LB-convex if and only if

by <0 (Vi,j €N, i#3), > b;>0 (VieN) (3.3)
j=1

This theorem shows that the coefficient matrix of a quadratic Li-convex func-
tion is nothing but a diagonally-dominant symmetric M-matrix. This means,
in particular, that a quadratic Li-convex function coincides with a Dirichlet
form of finite dimension. Note that any symmetric matrix with the property
(3.3) is positive semidefinite (cf. [2,28]).

In parallel with Theorems 3.2 and 3.3 we have the following.

Theorem 3.5 A matrix B € §,, belongs to ' if and only if B is a block-
diagonal matriz w.r.t. some subpartition {Ny | k = 1,2,...,m} of N such
that B[N,] € £ (k € {1,2,...,m}) and B[N \ U/, Ni] € L% where m =
n — rank B.

Theorem 3.6 Let B € S,,, and K C R" be a linear subspace. Then, a
quadratic function g over K, given by (2.1), is Li-convex if and only if K =
span{xn, | K = 1,2,...,d} for some subpartition {Ny | k =1,2,...,d} of N
and the “aggregated” matriz B € S, defined by by = >ien, 2jen, bij belongs
to Zh, where d = dim K.



3.2 Quadratic M-convex/Ms-convexr Functions

3.2.1 M-convex Functions

We first consider a special case where the function f is defined over the entire
space R™:

1
flx) = éxTAx (r € R"). (3.4)
We denote
Mi=[J{A €S, | function (3.4) over R™ is M*-convex, rank A = n},
n=1

M= J{A4 € S, | function (3.4) over R" is M¥-convex}.

n=1

Proposition 3.7
(i) Any matriz A € M" is positive definite.
(ii) Any matriz A € M s positive semidefinite.

Let f : R" — R be of the form (3.4) with a nonsingular A € §,,. We will show
in Theorem 3.8 that M"-convexity of such f is characterized by the following
properties.

(M*-EXC") Vz,y € R™, Vi € suppT(z —¥), 3j € supp (z — y) U {0},
30[0 > 0:
@)+ fly) > fla—alx —x;) + [y + alxi —x5)) (Vo € (0, a0),(3.5)

(M!-EXCY) 2'a; >min{0, min a'a;}  (Vz € R", Vi € supp™(x)),

jEsupp~(x)
(M!-EXC3-R)  2'a; > min {0, Ijr\lfl\l%} z'a;} (Vo € R, Vi € supp™(z)),
JE 7
(L-INV) A is nonsingular and A~! satisfies (3.3),

where a; (i € N) denotes the i-th column vector of A.

Theorem 3.8 Let f be a quadratic function over R™ given by (3.4) with A €
S,,. Then,

Ae M = (MLREXCH) <<= (ME-EXCY)
< (MEEXCI-R) <  (LEINV).

10



Combining Theorem 3.8 with Theorem 3.4 yields the following relationship
between £f and M?.

Theorem 3.9 For B € L% and A € M", we have B~ € M® and A~' € LF.
Hence, the inverse-matrixz relationship provides a one-to-one correspondence

between L% and M?.

We then consider the case where the coefficient matrix A is possibly singular.
We denote by (M!-EXC) the property (M-EXC*) with the strict inequality
“>” in (3.5) replaced by an inequality “>”. We define (M*-EXCy) from (M-
EXCY) in a similar way.

Theorem 3.10 Let f be a quadratic function over R™ given by (3.4) with
A€ S,. Then,

Ae M = (MLEXC) <= (MEEXCy).

We next reveal the structure of the (possibly singular) coefficient matrix A €
S, that defines a quadratic M*-convex function over R™.

Theorem 3.11 A matriz A € S,, belongs to M if and only if there exist a
subpartition {Ny | k =1,2,...,m} of N and an m x m matric A € M* such
that

Qg (Z eENg, €N, k,l € {1,2*...,772,}),

aij = i
0 (otherwise),

where m = rank A.

We finally consider the general form (2.2) involving a subspace H. We denote
by M the set of symmetric matrices A such that the quadratic function of the
following form is M-convex:

| n B
fa)— 57 Az (x € R", 2(N) =0), 36)

+oo  (otherwise).

Theorem 3.12 Let A € S,, and H C R™ be a linear subspace. Then, a
quadratic function f over H, given by (2.2), is Mf-convex if and only if there
exists a subpartition {Ny | k=1,2,...,m} of N such that

H={zeR"|2(N)=0(k=12...,m)} (3.7)
AN €M (k=1,2,....m),  A[Nnu] € M,

11



aij — ai’j = a/ij’ — ai’j’
(i,i' € Ny, j.j' € Ny, ke {1,2,....m}, k#£1), (3.8)
Q35 = Qg (Z € Nm+1, j,j/ € Nk, k€ {1,2, .. .,m}), (39)

where Nyp1 = N\ Upey Nk and m =n —dim H.

Remark 3.13 If the subspace H is given by (3.7) and the matrix A € S,
satisfies (3.8) and (3.9), then the quadratic function f given by (2.2) satisfies

AN z[N,]  (x € H). (3.10)

[\Dl’—‘

=% gl
Thus, the coefficient matrix A is effectively block-diagonal. O

3.2.2  M-convex Functions
For any matrix A € S,,, we define A" = (an) €S,_1 by

al

ij = Qjj — Qjp — Qnpj + Qnp (2*.7 eN \ {n})

We denote

M= [J{A €S, | function (3.6) is M-convex, rank A* =n — 1},

n=1

M= J{A € S, | function (3.6) is M-convex}.

n=1

It is easy to see from the definition of Mf-convexity that

AeEM = Ate Ml, AeM <« Ate M. (3.11)

Note also that for a matrix A = (@;j) € Spt1 given by

a;; = a;; ifi,5 €N, a;; =0 otherwise, (3.12)
we have
AeM &= AeM, AeM «— AecM. (3.13)

12



For a quadratic function f: R" — R U {400} of the form (3.6), consider the
following properties:

(M-EXC™") Vz,y € R™, Vi € supp™(x — y), 3j € supp™(z — y), Jag > 0:

f@)+ fy) > [z —aly —x5)) + [y +alx = x5))  (Ya € (0,a0]),

(M-EXCJ}) z2%a;> min 2%e;  (Vz € R", Vi € supp™(z)).

j€supp~ ()

We denote by (M-EXC4) the property (M-EXC}) with the strict inequality
“>" replaced by an inequality “>".

Theorem 3.14 Let f : R® — R U {400} be a quadratic function given by
(3.6) with A € S,,. Then,

() Ae M < (M-EXCH) < (M-EXC}),
(i) Ae M < (M-EXCy).

We next reveal the structure of the (possibly singular) coefficient matrix A €
S,, that defines a quadratic M-convex function over R".

Theorem 3.15 A matriz A € S,, belongs to M if and only if there exist a
partition {Ny | k= 1,2,...,m} of N and an m x m matriz A € M such that
ai; =g (i € Ny, j €N, k1l e{1,2,...,m}), where m = rank A.

We finally consider the structure of a quadratic M-convex function of the
general form (2.2).

Theorem 3.16 Let A € S,,, and H C R"™ be a linear subspace. Then, a
quadratic function f over H, given by (2.2), is M-convex if and only if there
exists a partition {Ny, | k = 1,2,...,m} of N such that (3.7), A[Ny] € M
(k=1,2,...,m), and (3.8), where m =n — dim H.

4 Conjugacy Between Quadratic L-convex and M-convex Func-
tions

The conjugacy relationship between quadratic L-/L%-convex and M-/M?-convex
functions is investigated in this section. For a function f : R — R U {+o0},
we define f*: R" — RU{xo0} by

f*(p) = sup{p*r — f(x) | * € R"} (p € R").

13



The transformation from f to f* is called the Legendre—Fenchel transforma-
tion, and the function f* is the conjugate of f. We have (f*)® = f for a closed
convex function. See [24,27] for details on the conjugacy of convex functions.

Suppose that f is a quadratic convex function over H given by (2.2) with a
positive semidefinite matrix A € §,, and a linear subspace H C R"™. Then,
the conjugate g = f* is a quadratic convex function given by (2.1) with a
positive semidefinite matrix B € §,, and a linear subspace K C R"™ such that
K = (HNker A)* and H = (K Nker B)*, where

Xt={peR"|p'z=0(VzeX)} (XCR")
ker A={z € R" | Az =0} (AeS,).

’

We may write this also as

dom f* = (arg min f)*, dom f = (argmin f*)*, (4.1)

where arg min f denotes the set of minimizers of f. In particular, if H = R"
and A is positive definite, then the conjugate f* is explicitly written as

1

) = QPTA‘lp (peR"). (4.2)

4.1  Conjugacy Between L-convexity and M-convezity

We show that quadratic L-/Ti-convex and M-/Mé-convex functions are con-
jugate to each other under the Legendre-Fenchel transformation.

Theorem 4.1

(i) Let B € S,,, and K C R" be a linear subspace. If a quadratic function
g over K, given by (2.1), is L-convex (resp. LP-convex), then the conjugate
g*: R" — RU {+00} is a quadratic M-convex (resp. M*-convex) function.
(ii) Let A € S,, and H C R" be a linear subspace. If a quadratic function
f over H, given by (2.2), is M-convex (resp. M:-convex), then the conjugate
f*:R™ — RU{+c0} is a quadratic L-convex (resp. Li-convex) function.

Note that we have already seen the essence of the above conjugacy in Theorem
3.9 and (4.2). The former reveals the inverse-matrix relationship between the
coefficient matrices of quadratic Li-convex and Mf-convex functions, and the
latter shows a fundamental fact that the coefficient matrices of a conjugate
pair of quadratic convex functions are the inverse of each other. The proof of
Theorem 4.1, to be given below, is a rather straightforward argument to build
up the conjugacy in this basic case by means of the structure theorems such as

14



Theorems 3.6 and 3.12 for the general case. We also use the following (easy)
fact, indicating the conjugacy between L-/Lf-convex and M-/M?-convex linear
subspaces.

Proposition 4.2 For a pair of linear subspaces K = span{xn, | k =1,2,...,m}
and H ={z € R" | o(Ny) =0 (k= 1,2,...,m)} defined by a subpartition
{N, | k=1,2,....m} of N, we have K = H*.

We now prove Theorem 4.1 in the case of L-convex g and M-convex f.

Proof of (i). [Case 1: K = R", B € L] Since argming = {A\1 | A € R},
we have domg¢®* = {z € R" | (V) = 0} by (4.1) and Proposition 4.2. The
property (LF2) also implies ¢°(z) = (1/2)z" Az (z € dom g°®), where A € S,
is given by A[N\ {n}] = (B[N \ {n}])"" and a;n = an; = 0 (i € N). Since
B[N \ {n}] € £% we have A € M by Theorem 3.9 and (3.13), which yields
the M-convexity of g°.

[Case 2: K = R™, B € £] By Theorem 3.2, there exists a partition {Nj |
k=1,2,...,m} of N such that argming = span{xy, | £ =1,2,...,m} and

9(p) = kL1 gu(p[N]) (p € R"), where gi(p[Ni]) = (1/2)p[Ni]* B[Ny p[INi]
and B[Ny] € £. This implies that each g} is M-convex by Case 1 and ¢*(x) =
S, gr(x[Ng]). Hence, ¢* is also an M-convex function.

[Case 3: general K| By Theorem 3.3, there exists a partition {Ny | k =
1,2,...,d} of N such that K = span{xn, | K = 1,2,...,d} and the matrix
B € 8, defined by by = Yien, Ljen; bij belongs to L. Define g : R? — R by
3(q) = (1/2)¢"Bq (g € R%). Then, we have (M-EXC) for (§)* by Case 2, and
g*(x) = (g)*(z) for any x € R™ and 7 € R? with ), = 2(Ny) (k = 1,...,d).
Hence, g* also satisfies (M-EXC), i.e., g* is M-convex. O

Proof of (ii). [Case 1: H = {z € R" | (N) = 0}] We may assume that
A€ Misgiven as AIN\{n}] = A’ € M and aim = ap; = 0 (1€ N) (cf. (3.11),
(3.13)). In the following, we first consider the case where A’ is nonsingular,
and then the general case.

[Case 1-1: rank A" = n — 1]  Since argmin f = {0} and dom f = {z €
R" | (N) = 0}, we have dom f* = R" by (4.1) and f*(p) = (1/2)p* Bp for
p € dom f*, where B is given by

(@) | @)

B—
_(1/)T(A/)f]_‘(1/)T(A/)711/
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and 1’ € R" ! is the vector with all components equal to one. We have B € £
since (A)~! € L% by Theorem 3.9. Hence, f* is L-convex.

[Case 1-2: general A’] By Theorem 3.15, there exists a partition {Nj |
k= 1,2,...,m} of N such that argmin f = {x € R" | (N;) = 0 (k =
1,2,....om)} and a;; = ay (1 € N, 7 € N, k1 € {1,2,...,m}) for some
m x m matrix A € M. By (4.1) and Proposition 4.2, we have dom f* =
span{xn, | k= 1,2,...,m}. Define f : R™ — R U {400} by

]_ T"" m
_ —y Ay (yeR™, >y, =0),
fly) =42 kgl

+o0o  (otherwise).

Then, (f)* is L-convex by Case 1-1. Since f*(S0, arxn,) = (f)*(q) for ¢ €
R?, f* is also L-convex.

[Case 2: general H| By Theorem 3.16, there exists a partition {Ny | k =
1,2,...,m} of N such that f(z) = >3, fu(x[Nk]) (z € R™) with a family of
quadratic M-convex functions f;, : RV — R U {+oco} given by

Sa[NTAINa N (2[Ne] € RY, 3 = 0),
Je(@[Ny]) = e
+00 (otherwise).

Since each (f;)® is L-convex by Case 1-2, f*(p) = > 72, (fx)*(p|Nk]) (p € R™)
is also L-convex. g

5 Quadratic L-convex/M-convex Functions over the Integer Lat-
tice

In this section, we consider discrete functions defined over the integer lattice
7" to indicate a subtle difference between the discrete case and the continuous
case. Transition to the discrete case is quite smooth for L-convexity (Theorem
5.1) but that for M-convexity is something unexpected (see Theorems 5.2, 5.3,
and 5.4).

5.1  L-convex/L*-convexr Functions

For a symmetric matrix B € §,,, we define a quadratic function g : Z" — R
by g(p) = (1/2)p" Bp (p € Z™). We call such a function L-convex if it satisfies
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the properties (LF1[Z]) and (LF2[Z]):

(LF1[{Z]) g(p) +9(q) > gpAq)+g(pVa) (Vp, q € domg g),
(LF2[Z]) 3r € Rsuchthat g(p+A1) = g(p)+Ar (Vp € domgzg, X € Z),

where domg g = {p € Z" | g(p) < +o0}; g is called Lf-convezif the function 3 :
ZN — R, where N = {0} U, defined by g(po.p) = 9(p — po1) ((po.p) € Z")

is L-convex. We denote by L[Z] (resp., ZH[Z]) the set of matrices B € S, such
that the function g over Z" is L-convex (resp., L*-convex). L-/Li-convexity of
quadratic functions over Z™ can be characterized by the same properties as

those over R”, i.e., L|Z] = L and £'[Z] = L. Proofs are quite similar and
therefore omitted.

Theorem 5.1 Let B € S,,. Then,

() BEL[Z] «— (3.2), (i) BeL'[Z] «— (3.3).
5.2 M-convex/M -convex Functions

For a symmetric matrix A € §,,, we define a quadratic function f : Z" —
R U {+o00} by

1y o
f(:c){Qx Az (x € Z", z(N) = 0), 51)

+00  (otherwise).

We call such a function M-convex if it satisfies the property (M-EXC|Z]):
(M-EXCIZ]) Vz,y € domg f, Vi € supp™ (x — y), Ij € supp™(z — y):

f@)+ fy) = flz—xi +x5) + [y +x—x5)-

We denote by M|Z] the set of matrices A € S, such that the function (5.1)
over {z € Z" | z(N) = 0} is M-convex. Matrices in M[Z] can be characterized
as follows:

Theorem 5.2 A matriz A € S,, belongs to M|Z)] if and only if

a;j + ar > min{ay, + aji, ay + aji}
(Vi,j, k,l € N with {i,5} N{k,l} = @) (5.2)

Proof. A function f given by (5.1) is M-convex if (M-EXC|Z]) holds for any
x,y € domg f with >0 _; |z —yk| = 4 (cf. [17, Th. 3.1]), which can be simply
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rewritten as (5.2). O

A quadratic function f : Z"™ — R given by

f(z) = %xTAx (reZh) (5.3)

is called M!-conver if the function f : Z¥ - RU {400}, where N = {0} U N,
defined by

Pt ) — {f(fv) .

+oo (otherwise),

is M-convex. We denote by M |Z] the set of matrices A € S, such that the
function (5.3) over Z" is M*-convex. Theorem 5.2 gives the following charac-
terization of quadratic M%-convex functions.

Theorem 5.3 A matriz A € S,, belongs to ﬂh[Z] if and only if (5.2), a;; > 0
(Vi,j € N), and a;; > min{a, a;p} (Vi,5,k € N with k ¢ {i,j}) hold.

)

Theorem 5.4 M[Z] C M and Mh[Z] c M.

Proof. We show the former only. (M-EXC|Z]) for f of (5.1) can be rewritten
as

) min {Q}TCLJ' — .TTCLZ' + a;; + Q5 — QCLU} < 0
j€supp~ (x)

(Vo € Z" with z(N) = 0, Vi € supp™(z)),

which, together with Theorem 5.2, implies min;equpp- (@) {z" a; —27a;} < 0 for
any x € Z" with x(N) = 0 and any ¢ € supp™ (z). Hence, (M-EXCy) holds for
A, ie., A€ M by Theorem 3.14 (ii). O

The inclusions in Theorem 5.4 are proper; for example, the symmetric matrix
A € 83 given by

524 3 0 =2
1
A=1253]|, where A*1:? 0 2 —11,
436 —-2-1 3

belongs to M and not to M [Z].
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6 Proofs
6.1  Proofs for Quadratic L-convex/Lf-convex Functions

Proof of Theorem 3.2. The “if” part is immediate from Theorem 3.1. To
prove the “only if” part, assume B € L. Then, B satisfies the condition
(3.2) by Theorem 3.1. Since argmin g is an L-convex linear subspace (cf. [21,
Th. 4.34]), there exists a partition {N, | & = 1,2,...,m} of N such that
argming = span{xy, | £ = 1,2,...,m} by Proposition 2.1. Since ker B =
argmin g, we have b xn, = Yjen, bij = 0forall i € N and k = 1,2,...,m,
where b; is the i-th column of B. This property, together with (3.2), implies
that B is a block-diagonal matrix such that each block B[Ny belongs to L.
It should be noted that rank B[N;| = |N;| — 1 follows from the equation
kerB[Nk] = XNp- O

Proof of Theorem 3.3. We first prove the “only if” part. Suppose that
g is L-convex. Then, domg = K is an L-convex linear subspace and can
be represented as K = span{xy, | K = 1,...,d} by some partition {Nj |
k =1,...,d} of N. Define g : R? — R by g(g) = (1/2)¢"Bq (¢ € RY),
where by = Yien, 2jen, bij- Then, we have gt arxn,) = d(q) (Vg € RY),
implying L-convexity of g, i.e., B € L. The “if” part is obvious from the
discussion above and Proposition 2.1. O

6.2 Proofs for Quadratic M-convex/Mt-convex Functions

6.2.1 Proof of Proposition 3.7

It can be easily shown that A € M! (resp., A € Mh) implies (M!-EXCI-R)
(resp., (MP-EXCy)) (see the proofs of Theorems 3.8 and 3.10 below). Hence,
it suffices to prove the following.

Proposition 6.1
(i) Any matriz A € S, satisfying (MP-EXCZ-R) is positive definite.
(ii) Any matriz A € S, satisfying (M--EXCy) is positive semidefinite.

Proof. We prove (i) only since (ii) can be shown similarly. Let A be an
eigenvalue of A, and x be the corresponding eigenvector with supp™(z) # 0.
Let i = 4, minimize the value Az; among i € supp™(x). (M:-EXCJ-R) implies

Az;, =2ta;, >min {0, min z'ae;} =min{0, min Az;}. 6.1
c=oTe > min{0, min da} =min{0, min da}(61)
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By the choice of i., we have A\z;, < Az; for any j € supp™(x). Hence, (6.1)
implies Az;, > 0 or Az;, > Az; for some j € supp~(z), each of which yields
A > 0. Hence, A is positive definite. O

6.2.2  Proofs of Theorems 3.8 and 3.1/ (i)

We first prove the equivalence “(M*-EXC) and rank A = n <= (M:-EXCY)
< (MEEXCY) <= (M-EXCI-R) < (LE-INV).”

Lemma 6.2 (Farkas’ lemma) Let A be an m x n real matriz and b € R™.
Then, Ax = b for some nonnegative x € R"™ if and only if y*b > 0 for every
y € R™ with yT A > 07.

Lemma 6.3 (M-EXCI-R) < (L*-INV).

Proof. We first note that (M*-EXCZ-R) implies the nonsingularity of A by
Proposition 6.1. Denoting A~! by B = (b;;), we have AB = I, i.e., Y}_, bjia; =
Xi (i € N), which can be rewritten as

(

:bﬂ)“i * g(—bﬁ)@ —a;)=x; (i€N).

J

The condition (3.3) for B is equivalent to all the coefficients in this linear
combination being nonnegative, whereas the latter condition is equivalent, by
Lemma 6.2, to y"a; > min {0, min;; y*a;} for any y € R™ with y*x; = y; > 0,
which is nothing but (M*-EXC}-R). 0

To show the equivalence “(M-EXCY) <= (M*-EXC}-R),” we use the fol-
lowing property:

Lemma 6.4 If A € S, satisfies (L*-INV), then any principal submatriz of A
satisfies (LA-INV).

Proof. Put B = A™'. Then, B satisfies (3.3). Partition 4 and B as

A A | Bu B
— , —
Agy Ag By Bay
with submatrices Ay, Biy € Spo1, Ay = Aot = (A1, G2, -+, A1), Bly =

B21 = (bnlabn27 . .,bnvnfl), A22 = Apn, BQQ = bnn We will show that All is
nonsingular and (A;;) ! satisfies (3.3).

We have by, > 0 since B is a nonsingular matrix with (3.3). Therefore, the
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inverse of Aj; is given by B = By — (1/b,) B12Bax, which shows that Aqq is
nonsingular. For any ¢, j € N\{n} with i # j, we have b;; = b;;—0;,b,j/bpr, <0
since b;;, bin, by; < 0 and b, > 0. For any ¢ € N \ {n}, we have

n—l/\ n
> by =
j=1 J

1

n—1 n—1
bij - (bzn/bnn) Z bnj 2 _bin - (bzn/bnn) Z bnj 2 0

1 =1 =1

M

Hence, B = (Ay;)~" satisfies (3.3). O
Lemma 6.5 (M:-EXC}) <= (M.-EXC}-R).

Proof. It suffices to show the “«<=" direction. Assume (M*-EXCI-R) for
A. For x € R™ it suffices to consider i € supp™*(z) with minimum z%a;. Put
S={jeN|z;#0}, A=(a;|je€S)=A[S], and T = 2[5]. Then, we have
i € supp™(T) = supp™* (), supp~(T) = supp™ (), and T'a; = z"a; (Vj € S).
By Lemmas 6.3 and 6.4, we have (M*:-EXC}-R) for A4, implying

_T— . . _T—
T a; > min{0, min 7 a,}. 6.2
0, min 7'} (62)

By the choice of i, we have z'a; < T'a; for j € supp™(Z). Hence, from (6.2)
follows '@; > min {0, minjequpp-(z) T @;}. O
Lemma 6.6 (M-EXCT) < (M-EXCY).

Proof. Since

flz =al —x5) + [y + ol —x5) = fl2) = Fy)

=a(r —y)'(a; — ;) + o*(ai + aj5 — 2a;y),

(ME-EXCY) for f can be rewritten as follows:

Vo e R™ Vi € suppt(z), 3j € supp~(z) U{0}: (6:3)
. :

[z%a; < 2%a;] or [z%a; = 2%a; and a;; + a;; — 2a;; < 0],
where agp = 0 and a;p = ap; = 0 (i € N) by convention. In particular, (6.3)
for x = x; — xx and x = xx — x; implies a;; + apr — 2a;, > 0 for all : € N

and k € N U{0}. Hence the second case in (6.3) is impossible, and (6.3) is
equivalent to (M*-EXCY). O

Lemma 6.7 (M:-EXC) and rank A = n <= (ME-EXCH).
Proof. Assume (M:-EXCT) for f. Then, we can show that rank A = n in

the same way as Proposition 6.1 (i), which proves the “<=" direction. On the
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other hand, (M-EXC) for f yields the positive semidefiniteness of A, which
can be shown similarly to Proposition 6.1 (ii). This, together with rank A = n,
implies the strict convexity for f. Hence, (M-EXC*) follows. O

The equivalence “A € M <= (M-EXC') <= (M-EXC})” can be shown
in the similar way as Lemmas 6.6 and 6.7, implying Theorem 3.14 (i).

Define A = (d;;) € Sys1 by (3.12). By (3.13) and Theorem 3.14 (i), we have

the equivalence “A € M? <= Ae M <= (M-EXC]) for A7, where the
last condition can be rewritten in terms of A as

(i) 2%a; >min {0, min 2"a;}
Jjé€supp~ ()
(Vz € R™ with 2(N) > 0, Vi € supp™(x)),
(ME-PRJ}){ (ii) 2'a; > min  z'q;
Jjéesupp~ ()
(Vo € R™ with 2(N) < 0, Vi € supp™(x)),

(iii) 0 > min( )xTaj (Vx € R" with z(N) < 0).
JEsupp~ (z

To conclude the proof of Theorem 3.8, we show the equivalence “(M*-PRJY)
— (ME-EXC]).”

Lemma 6.8 IfA € S, satisfies (L*-INV) and if 2(N) < 0, then 0 > minjey 2% a;.

Proof. Put B = A~!. Then we have

0> a(N) = "1 = 2" AB1 = 3" («"a)) (3 by).

j=1 i=1

whereas 27 1 b;; > 0 for every j € N by (3.3). Hence zta; < 0 for some
jeN. O
Lemma 6.9 If A € S, satisfies (M*-EXCy), then a; > a; >0 (Vi,j € N).

Proof. For a sufficiently small € > 0, (M:-EXCy) with 2 = ey; + x; implies
a;j > 0, whereas (MA-EXCy) with z = ex; — x; implies a; > a;;. O

Lemma 6.10 (M*-PRJ}) < (M*EXCY).

Proof. We assume (M*-EXC]) for A, and prove (M*-PRJJ). The property
(i) in (M®-PRJY) is immediate from (M-EXCY). In the same way as Lemma
6.5, we can show by using Lemma 6.8 that

0 > min{z"a; | j € N, z; # 0} (x € R™ with z(N) < 0),
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which, together with (M®-EXCY), implies (iii).
We now prove (ii). Assume z(N) < 0 and ¢ € supp™(x).

[Case 1: z(N) < 0] If 2%a; < 0, then (M*-EXC]) immediately yields (ii).
Otherwise, we have z'a; > 0, and therefore the property (iii) shown above
implies 2% a; > 0 > min;equpp-(2) 2" @;.

[Case 2: ©(N) = 0] Putting 2’ = x — ex; with a sufficiently small € > 0, we
have 2/(N) < 0, supp™(2’) = supp™(z), and supp~(2’) = supp~(x). Hence,
the argument in Case 1 implies

eta; —ea; = (2')'a; > min (2')'a; = min (2'a; —eay),
jEsupp~ () Jj€Esupp (x)
where a;; > a;; by Lemma 6.9. This shows (ii). a

6.2.3 Proofs of Theorems 3.10 and 3.1/ (ii)
Lemma 6.11 (M:-EXC) <= (M-EXCy).

Proof. (Mi-EXC) for f can be rewritten as follows in terms of A (cf. (6.3)):

Vo e R", Vi € supp*t(z), 3j € supp~(z) U{0}: (6.4)
. :

[z%a; < 2ta;] or [z%a; = 2%a; and a;; + a;; — 2a;; < 0],
where ag = 0 and a;p = ag; = 0 (¢ € N) by convention. Hence, the “="
direction is obvious.
We then prove the converse. Let x € R™ and ¢ € supp™(z). For a sufficiently
small € > 0, define & = 2+2exg—2key; with S = supp ™ () and k = |S|. Then,

we have i € supp™(#) = supp*(x) and supp(#) = supp (). By (M*-EXCy)
applied to Z and i, there exists j € supp~ (z) U {0} such that

" (a; — a;) + (2exs — 2kexi) " (a; — a;). (6.5)
Put 2’ = 2xs — x; — (2k — 1)x;. If j # 0, then (M%-EXC4) applied to 2’ and j
implies

(2")Ya; > min{0, (2)*a;} > (2')'a;, (6.6)
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where the second inequality is by Lemma 6.9. Note that the inequality (6.6)
also holds with j = 0 since (2/)Tag = 0. Combining (6.5) and (6.6), we have

0> xT(aj —a;) +e(x; — Xi)T(aj —a;) = xT(aj —a;) +e(ay; + ajj — 2a;5),

implying (6.4). O

The equivalence between (M-EXC) and (M-EXCy) can be shown similarly as
Lemma 6.11, implying Theorem 3.14 (ii).

We denote by (M!-PRJg) the property (ME-PRJY) with the strict inequalities
“>” replaced by inequalities “>”. By (3.13) and Theorem 3.14 (ii), we have
“Ae M < AeM < (MEXCy) for A < (M-PRJy) for A,
where A = (@;;) € Spy1 is given by (3.12). To conclude the proof of Theorem
3.10, it suffices to show “(Mi-PRJy) <= (M%-EXC4).” The “=" direction
is obvious. To show the converse, assume (M*-EXCy) for A. For any 8 > 0,
we define Ag = A+ (1. Then, for x € R" and ¢ € supp™(z) we have

zta; + Bz; > z'a;>min {0, min 2'aq;}
j€supp~(x)
>min {0, min (z'a; + Bz;)},
j€supp~ ()

i.e., (M-EXCY) holds for A. From Lemma 6.10 follows (M*-PRJY) for As for
any 3 > 0, implying (M*-PRJ,) for A.
6.2.4 Proof of Theorems 3.11 and 3.15

We show the “only if” part of Theorem 3.11 only. The “if” part of Theorem
3.11 is easy, and Theorem 3.15 can be shown similarly.

Consider a quadratic M*-convex function f : R" — R given by (3.4) with

A € M. Since argmin f is an M"-convex linear subspace, there exists a sub-
partition {Ny | k =1,2,...,m} of N such that

argmin f = span(|J{x; —xi | ,7 € Ni}U{xi | i € N\ |J Ni})
k=1 k=1

by Proposition 2.2. Since ker A = argmin f, we have

a;f(xj—xi):ajh—aih:() (he N, i,j € Ny, ke {1,2,...,m}), (6.7)

apxi=aip, =0 (hEN, i€ N\ |J Ny).
k=1
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We define a matrix A € S,, by ay = ai (i € Ny, j € Ny, kle{l,2,...,m}),
which is well-defined by (6.7). Since A is a principal submatrix of A, A also

belongs to M. Moreover, the equation ker A = argmin f implies that A is
nonsingular. Hence, A € M" holds.

6.2.5 Proofs of Theorems 3.12 and 3.16
We prove Theorem 3.16 only. Theorem 3.12 is immediate from Theorem 3.16.

We first show the “if” part. The function f is rewritten as

) =3

k=1

o [Ni|' A[Ny] 2| Ni] (r € H).

DN | —

Hence, the M-convexity of f follows immediately from A[N,] € M (k =
1,2,...,m).

We then prove the “only if” part. Suppose that f is M-convex. Then, dom f =
H is an M-convex linear subspace, and therefore H = {z € R" | z(N;) =
0(k=1,2,...,m)} for some partition {Ny | k =1,2,...,m} of N by Propo-
sition 2.2.

We then prove A[Ny] € M (k=1,2,...,m). Let ,y € H be any vectors with
zp=yn=0(h € N\ Ny), and i € supp™(z — y) N Ni. By the M-convexity of
f, there exist some j € supp™ (x — y) and ay > 0 satisfying

f@)+fy) =z fle—alxi—x;) + fy+ali—x;) (Vo€ (0, a)).
In particular, we have z —a(x; — x;) € H and y + a(x; — x;) € H for any

a € (0,qp], implying j € Ni. This fact shows that the quadratic function
Jx : RV — R U {400} given by

Loy " (2! k / _
fk(m/) _ 5(1' )TA[Nk].T (.T < RY , T (Nk) — 0)’
+00 (otherwise)

is M-convex, implying A[Ny| € M.

We next show (3.8). Put o = (x; — x«) + B(x; — ;) with any real number 3,
and y = 0. Then, (M-EXC) applied to z,y € H and i € supp™ (x — y) implies
that there exists some a > 0 such that

0 Z OZ(QCLZ'Z'/ — Qi — ai/i/) -+ aﬁ(ai/j — Qyrjr — Q4 + aij/) -+ 0[2(G,Z'i + a;y — 2aii’)-
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Since 3 can be chosen arbitrarily, we have a;; — a;jr — a;; + a;jy = 0.
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