An Optimal Enumeration of Spanning Trees in an Undirected Graph

Akiyoshi SHIOURA * Akihisa TAMURA | and Takeaki UNO *#

(July, 1994)

Abstract: Let G be an undirected graph with V vertices and F edges. Many
algorithms have been developed for enumerating all spanning trees in G. Most of the
early algorithms use a technique called ‘backtracking’. Recently, several algorithms
using a different technique have been proposed by Kapoor and Ramesh (1992), Matsui
(1993), and Shioura and Tamura (1993). They find a new spanning tree by exchanging
one edge of a current one. This technique has the merit of enabling us to compress
the whole output of all spanning trees by outputting only relative changes of edges.
Kapoor and Ramesh first proposed an O(N+V+E) time algorithm by adopting such
‘compact’ output, where N is the number of spanning trees. Another algorithm with
the same time complexity was constructed by Shioura and Tamura. These are optimal
in the sense of time complexity, but not in terms of space complexity, because they
take O(V E) space. We refine Shioura and Tamura’s algorithm, and decrease the space
complexity from O(V E) to O(V+FE) while preserving time complexity. Therefore, our
algorithm is optimal in the sense of both time and space complexities.

Keywords: Optimal Algorithm, Spanning Trees, Undirected Graphs.

1 Introduction.

Let G be an undirected graph with V vertices and E edges. A spanning tree of G is
defined as a connected subgraph of G which contains all vertices, but no cycle. In this paper
we consider the enumeration of all spanning trees in an undirected graph. Many algorithms
for solving this problem have been developed, e.g. [7, 8, 4, 5, 6, 9], and these may be divided
into several types.

The first type [7, 8, 4], to which belong many of the early algorithms use a technique
called ‘backtracking’. This is a useful technique for listing the kinds of subgraphs, e.g. cycles,
paths, and so on. Gabow and Myers [4] refined Minty’s algorithm [7] and Read and Tarjan’s
[8]. Their algorithm uses O(NV+V+FE) time and O(V+FE) space, where N is the number
of all spanning trees. If we enumerate all spanning trees by outputting all edges of each
spanning tree, their algorithm is optimal in terms of time and space complexities.

Recently, several algorithms [5, 6, 9] which use another technique have been developed.
These algorithms find a new spanning tree by exchanging one pair of edges, instead of

*Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, 2-12-1 Oh-
okayama, Meguro-ku, Tokyo 152, Japan. shioura@is.titech.ac.jp

"Department of Computer Science and Information Mathematics, The University of Electro-
Communications, 1-5-1 Chofugaoka, Chofu-shi, Tokyo 182, Japan. tamura@im.uec.ac.jp

iDepartment of Systems Science, Tokyo Institute of Technology, 2-12-1 Oh-okayama, Meguro-ku, Tokyo
152, Japan. uno@is.titech.ac.jp

backtracking. Furthermore, if we enumerate all spanning trees by outputting only relative
changes of edges between spanning trees, we can compress the size of output to O(N+V),
and hence, total time complexity may be reduced. In fact, Kapoor and Ramesh [5] proposed
an O(N+V+EF) time and O(VE) space algorithm by adopting such a ‘compact’ output,
which is optimal in the sense of time complexity. On the other hand, Matsui [6] developed
an O(NV+V+FE) time and O(V+FE) space algorithm for enumerating all spanning trees
explicitly, by applying the reverse search scheme [3]. Reverse search is a scheme for general
enumeration problems (see [1], [2]). Shioura and Tamura [9] also developed an algorithm
generating a compact output with the same time and space complexities as the Kapoor-
Ramesh algorithm, by using the reverse search technique. The Kapoor-Ramesh algorithm,
and the Shioura-Tamura algorithm, however, are not efficient in terms of space complexity,
because they take O(V E) space.

The main aim of this paper is to obtain an algorithm which generates a compact output,
and is optimal in the sense of both time and space complexities, by refining the Shioura-
Tamura algorithm. When the process goes to a lower level node of the computation tree
of the original algorithm, some edge set can be efficiently divided without requiring extra
information. However, in order to efficiently restore such an edge set when the process goes
back to the higher level node, the algorithm requires extra O(F) information. Since the
depth of the computation tree is V—1, it takes O(V E) space. We propose a useful property
for efficiently restoring the edge set and a technique for restoring it which uses extra O(V)
space in all, while time complexity remains O(N+V+FE).

In Section 2, we explain the technique for enumeration of spanning trees and compact
outputs. In Section 3, we define a nice child-parent relation between spanning trees and
propose a naive algorithm. In Section 4, we show some properties which are useful for
efficient manipulation of data structures in our implementation. Our implementation is
presented in Section 5, and the time and space complexities are analyzed.

2 Compact output.

Let G be an undirected graph (not necessary simple) with V' vertices {vy,---, vy}
and E edges {e;,---,ep}. We define two types of edge-sets which are necessary for our
algorithm, so-called fundamental cuts and fundamental cycles. Let T be a spanning tree of
(G. Throughout this paper, we represent a spanning tree by its edge-set of size V—1. For
any edge f € T, deletion of f from T yields two connected components. The fundamental
cut associated with T and f is defined as the set of edges connecting these components,
and is denoted by Cut(T\f). Likewise, we define the fundamental cycle associated with
T and g ¢ T, as the set of edges contained in the unique cycle of T'U g. We will denote
it as Cyc(TUg). From definition, 7T\ fUg is a spanning tree for any f € T and any
g € Cut(T\f), Similarly, for any g € T and any [€ Cyc(TUg), TUg\f is also a
spanning tree. These properties are useful for enumerating spanning trees, because by using
fundamental cuts or cycles we can construct a different spanning tree from a given one by
exchanging exactly one edge.

Given a graph G, let S(G)=(7,.A) be the graph whose vertex-set 7 is the set of all
spanning trees of G and whose edge-set A consists of all pairs of spanning trees which
are obtained from each other by exchanging exactly one edge using some fundamental cut
or cycle. For example, the graph S(G1) of the left one G is shown in Figure 1.

S(G1)

G
Q
€4 €s
()
e es
O ()

Figure 1: graph G and graph S(Gy)

Our algorithm finds all spanning trees of GG by implicitly traversing some spanning tree
D of S(G). Inorder to output all (V—1) edges of each spanning tree, O(|7]-V) = O(N-V)
time is required. However, if we output all edges of the first spanning tree, and then only
the sequence of exchanged edge-pairs of G obtained by traversing D, we need only
O(|T| +V) = O(N+V) time, because |D| = |7|—1 and exactly two edges of G are
exchanged for each edge of D. Furthermore, by scanning such a ‘compact’ output, one can
construct all spanning trees. Since we adopt such a compact output, it becomes desirable to
find the next spanning tree from a current one efficiently in constant time.

3 Basic ideas and naive algorithm.

In this section we explain the basic ideas and the naive algorithm.

We define the total orders over the vertex-set {vq,---, vy} and the edge-set {e;,---,eg}
of G by their indices as v; < vy < --- <wy and e} < ey < --- < eg. HEspecially, we
call the smallest vertex wv; the root. For each edge e, we call the smaller incident vertex
the tail, denoted by O%e and call the larger one the head, denoted by 07e. Relative to a
spanning tree T of G, if the unique path in T from vertex v to the root wv; contains
a vertex u then wu is called an ancestor of v and v is a descendant of w. Similarly,
for two edges e and f in T, we call e an ancestor of f and f a descendant of e if
the unique path in 7" from f to the root wv; contains e. A ‘depth-first spanning’ tree
of GG is a spanning tree which is found by some depth-first search of G. It is known that a
depth-first spanning tree is defined as a spanning tree such that for each edge of G, its one
incidence vertex is an ancestor of the other.

In our algorithm, we make several assumptions for the vertex-set and the edge-set of G.

Assumption (1). T is a depth-first spanning tree of G.

€5 @
ey €6
O ®

Figure 2: graph Gy

Assumption (2). T°={e;, -, ey_1}.

Assumption (3). Any edge in T° is smaller than its proper descendants.
Assumption (4). Each vertex v is smaller than its proper descendants relative to T°.
Assumption (5). For any two edges e, f ¢ T°, if e < f then d%e < ITf.

Vertices and edges of graph Gy in Figure 2 satisfy these assumptions. In fact, one can
find 7° and sort vertices and edges of G in O(V+E) time so that G satisfies the above
assumptions by applying Tarjan’s depth-first search [10]. We note that assumptions (1),
(2), and (3) are sufficient for the correctness of our algorithm. We, however, need further
assumptions (4) and (5) for an efficient implementation.

For any nonempty subset S of {e1,---,eg}, Min(S) denotes the smallest edge in S.
For convenience, we assume that Min(()) = ey .

Lemma 3.1. [9] Under assumptions (1) and (3), for any spanning tree T¢ # T°, if
f=Min(T°\ T then Cyc(T°Uf)NCut(T\f)\ f contains exactly one edge.

Proof. Theset T°\ f has exactly two components, one containing &~f and the other
Otf. Therefore the unique path Cyc(T°Uf) \ f from O~ f to OTf in T contains at
least one edge in Cut(T°\f). Hence Cyc(T°Uf) N Cut(T\f)\ f # 0.

Since T° is a depth-first spanning tree, we may assume the head of any edge is a
descendant of its tail relative to 7°, without loss of generality. Let e be the first edge
from O7f on the path such that e € Cut(7°\f). Then the head 07 is a descendant of
O~f relative to TP, and the tail 9% is an ancestor of 9%f. From assumption (3) and
the minimality of f, &% and O%f are connected in T¢NT°. Thus, there is no edge
contained in Cut(T°\f) between e and 9*f in the path Cyc(T°Uf)\ f. Hence e is
the only edge in Cye(T°Uf) \ f and Cut(T°\f). |

Consider the graph G5 of Figure 2. Here let T9 = {e1, €5, 3,4} and T¢ = {ey, €5, €, €7}
In graph Go,

f = Min{e;, ez, e3} = ey,

Cyc(T°Uf) = {e1, €5, €7}

Cut(T°\f) = {e1, €5, s}

4

S(G1)

Figure 3: child-parent relations in S(G4)

Therefore, Cyc(TUf) N Cut(T°\f) \ f = {es}.

Given a spanning tree 7°¢ # T° and the edge f = Min(7° \ T¢), let g be the unique
edge in Cyc(T°Uf) N Cut(T°\f) \ f. Clearly, T? = T°Uf\g is a spanning tree. We call
TP the parent of T¢ and T¢ a child of TP. Lemma 3.1 guarantees that each spanning
tree other than T has a unique parent. Since |T? NT°| = |T°NT°|+1 holds, T° is
the ancestor of all spanning trees. For the graph G4 in Figure 1, all child-parent pairs are
shown by the arrows in Figure 3. Each arrow goes from a child to its parent. We can see
that all arrows construct a spanning tree of S(G;) rooted at T°.

Let D be the spanning tree of S(G) consisting of all child-parent pairs of spanning
trees. Our algorithm implicitly traverses D from T° by recursively scanning all children
of a current spanning tree. Thus we must find all children of a given spanning tree, if they
exist. The next lemma gives a useful idea for this.

Lemma 3.2. (9] Let TP be an arbitrary spanning tree of G, andlet f,g be two distinct
edges. Under assumptions (1), (2), and (3), T¢=T?\fUg is a child of T? if and only if

)

f and g satisfy the following conditions:
f<Min(T°\ T?) and g € Cut(T*\f) N Cut(T°\f) \ f. (3.1)

Proof. Under assumptions (1) and (3), 7 is a child of 7% if and only if the following
conditions hold:

T¢ is a spanning tree different from 77, .
f'=Min(T°\ T% and ¢ € Cyc(TUf") N Cut(T°\f') \ f, (3.3)
" =TUf'\¢g'.

We first show that f = f' and ¢ = ¢’. From (3.2), (3.3) and (3.4), 7° and 7?7 are
different spanning trees. Assume on the contrary that f ¢ TP, then T? \ f = T?. Since
T° is a spanning tree and f # g, we have g € TP and T° = TP\ fUg = TP, which is a
contradiction. Thus, f € TP and g & T?. From (3.4), T? = {T*\ fUg}Uf"\¢’, and hence
f=/f and ¢g= ¢ must hold.

Conditions (3.2), (3.3), and (3.4) imply

feTNT® and g g TP UT". (3.5)

On the other hand, under assumption (2), (3.1) implies (3.5). Moreover, (3.1) and (3.5)
imply (3.2) and (3.4). All we have to do is to show that (3.1) and (3.3) are equivalent under
conditions (3.2), (3.4), and (3.5).

From definition of 7¢ and (3.5), T°\ 7¢ =T\ (T°\fUg) = (T° \ T?) U {f}. Hence
Min(7° \ 7¢) = Min(Min(7° \ T?) U {f}). This implies that f = Min(7° \ 7°) if and
only if f < Min(7°\ T?). Since TP and T¢ = TP\fUg are distinct, g € Cyc(T°Uf) is
equivalent to g € Cut(T?\f). Therefore, the second condition of (3.1) is equivalent to the
second condition of (3.3). i

Let er be the largest edge less than Min(7° \ T?). From this lemma, we can find all
children of 77 if we know the edge-sets Cut(T?\e;) N Cut(T\e;) \ e; for j=1,2,--- k.
Consider the graph G = G defined in Figure 1 and 7% = T. In this case, e; and e
are the only edges smaller than Min(7° \ T?) = e3 and

Cut(TH\ea) N Cut(T\ey) \ ea = {es,es} N{ea,es} \ ea = {es}
Cut(T"\ey) N Cut(T\e1) \e1 = {e1,es, et Ni{er,enest\er = {es}

Therefore, T has only the two children T"\esUe, and T'\e;Uey.

In the rest of paper we shortly write Cut(T?\e;) N Cut(T°\e;) \ e; as Entr(T?,e;) on
grounds that any edge in Cut(T?\e;) N Cut(T\e;) \ e; can be ‘entered’ into TP in place
of e;. From the above consideration, we can construct the algorithm as below.

algorithm all-spanning-trees(G) ;
input: a graph G with a vertex-set {vy,---, vy} and an edge-set {e},---,ep} ;
begin
by using a depth-first search,
- find a depth-first spanning tree T° of G,
- sort vertices and edges to satisfy assumptions (2), (3), (4), and (5);
output(“ey, eq, -+, ey_q,tree,”) ; {output T°}
find-children(7°,V —1) ;
end .

procedure find-children(77? k) ;
input: a spanning tree 7% and an integer k with e, < Min(7° \ T7) ;
begin
if £ <0 then return ;
for each g € Entr(T?,e;) do begin {output all children of 7% not containing ey}
T¢ = TP\exUg ;

A
AN AR A

JOWARNA

Figure 4: enumeration tree of spanning trees in Gy
output(“—eg, +g,tree,”) ;
find-children(7°,k—1) ; {find the children of T}
output(“—g, +ex,”) ;
end ;

find-children(7?,k—1) ; {find the children of T? not containing e;_; }
end .

In this algorithm, procedure find-children() finds all children of each spanning tree. When
it is called with two arguments TP and k, it finds all children of T? mnot containing
an edge e,. Whenever it finds such a child 7°¢, it recursively calls itself again for finding
all children of T°. In this stage, arguments are set to 7° and k—1, because if k£ > 1
then ey_; becomes the largest edge less than Min(7° \ 7¢). If all children of TP not
containing e; have been found, it recursively calls itself again for finding all children of
TP not containing ej_;. In this case arguments are TP and k—1. Initially, algorithm
all-spanning-trees(G) calls find-children() with arguments 7° and V-1, and all spanning
trees of G are found. Figure 4 shows the enumeration tree of spanning trees in graph Gf.

Theorem 3.3. [9] Algorithm all-spanning-trees() outputs each spanning tree exactly once.

Proof. From Lemma 3.2, every spanning tree different from 7° is output once for each
time its parent is output. From Lemma 3.1, for any spanning tree 7° other than T°, its
parent always exists and is uniquely determined. Since TP is the ancestor of all spanning
trees, the algorithm outputs each spanning tree exactly once. | |

4 Manipulating data structures.

In our algorithm, we define each state when we find all children of 7% not containing ey
by a pair (7?,k). When we call procedure find-children(7?, k), the current state becomes
(TP, k), and if we find a child T° of T? not containing ey, the state moves to (7°¢ k—1).
After all children of TP not containing e, have been found, the state moves to (77, k—1).
At the state (TP, k), the entering edge-set FEntr(T?,e;) is required to output all children

7

jp——— jp——— ———————

T1 }/(T, 2), }(T, 13\ T4 }/(il:[yil\)\\ T6 T7
Ael:{} }—>}e1:{e4}} &el:{es} A A
ez el *) | ‘
T2 (12,1)) T3 TS
e} /}

Figure 5: movement of the state and Can(x; *, x)

of TP not containing e. After the state moves to (7°k—1) (or (77, k—1)), the
necessity of the entering edge-set Entr(T¢ ex_1) (or Entr(T? ex_1)) occurs for the first
time. The key point is finding an entering edge-set FEntr(T¢ ey 1) (or Entr(T? e 1))
efficiently. For constructing an entering edge-set efficiently, our implementation maintains
edge-sets Can(e;; TP, k) for j=1,---,k defined below. Let TP be a spanning tree and
k be a positive integer with e, < Min(7° \ T%). For each edge e; (j = 1,---,k), we define
Can(e;; TP, k) by

k
Can(ej; TP, k) = Entr(T?,e;) \ | Entr(T%, ep). (4.1)
h=j+1
Here we use this notation in the sense that Can(e;;T?. k) 1is a set of ‘candidates’ of
the entering edges FEntr(1?,e;) for a leaving edge e; at the state (7% ,k). We can
find Entr(T?,e;) very easily by maintaining Can(e;; 7%, k) for j = 1,---,k, because
Can(ex; TP, k) = Entr(T?,e;) from definition (4.1). When we find a child 7°¢ of 77, we
update Can(e;; TP k) for j=1,---.k to Can(e;;T¢ k—1) for j=1,---,k—=1. On
the other hand, after we have found all children of 7P not containing ey_;, we construct
Can(ej; TP, k—1) for j=1,--- k=1 from Can(e;;T?,k) for j=1,--- k. Efficiency of
our implementation depends on how to maintain Can(x;*,*) efficiently.
Figure 5 shows states and edge-sets Can(x;*,*) during enumerating all spanning trees
of G in Figure 1. For example, at the initial state (7°,3),
Can(e;; T%,3) = 0,
Can(ey; T°,3) = {es},
Can(es; T°,3) = {es).
At the succeeding states (T',2) and (77°,2),
Can(e;; T 2) = 0,
Can(ey; T, 2) = {es},

8

and

Can(el;TO,Q) = {es},
Can(ey; T°,2) = {e4}.

Here we consider how to maintain such edge-sets. First we show that the initial edge-sets
Can(e;; T°,V—1) for j=1,---,V—=1 can be found easily.

Lemma 4.1. [9] Under assumptions (1), (2), (3), and (4),
Can(e; T°,V—1) ={e| e €T, 0% < d%; and 07e = d7¢;} (j=1,---,V=1). (4.2)

Proof. Since Entr(1° e;) = Cut(T%\e;) \ e;, Can(e;; T°,V—1) can be written as:

V-1

Can(e;; T°,V—1) = [Cut(T\e;) \ €;] \ U [Cut(T"\ey) \ en] .

h=j+1

Under assumptions (1) and (4), an edge e € T° belongs to Cut(7°\e;) if and only if 97e
is a descendant of d7e; and J'e is an ancestor of d%e; relative to T°. In addition, under
assumption (3), for e & T° e, is the largest edge with e € Cut(T%\e;) if and only if
07e =07¢; and O'e < Je;.]

From the lemma, we can find Can(e;; T°,V—1) for j=1,---,V—1 in O(V + E) time by
applying a depth-first search.

Lemma 4.2. For any spanning tree TP and any positive integer k with e <
Min(7° \ T?), let g be an arbitrary edge in Entr(TP e;) U {ex}. Under assumptions
(1), (2), (3), and (4), the following relation holds for a spanning tree T = TP\exUg and an
edge e; with j <k :

Entr(T?, e;) if ej € A,

Entr(1?,e;) \ Entr(1?,e;) otherwise, (4.3)

Entr(T,e;) = {

where A is the set of ancestors of the edge e, in T° with 07e, = 0%g if it ewists;
otherwise A = (.

Proof. We note that if g € Entr(T?,e;) then T is a child of 77, and that if g = e
then T'=T".

Each descendant of 07ep relative to 7% is a descendant of 07¢g relative to T,
and vice versa. Therefore, for any e; € A, Entr(T,e;) = Entr(1I?,e;). If e; ¢ A
is an ancestor of e then FEntr(T,e;) C Entr(T? e;). More precisely, for any edge
e € Entr(T?,e;) such that 07e is a descendant of O07e; relative to TP, e does not
belong to Entr(T,e;), and the other edges obviously belong to Entr(T,e;). That is
Entr(T,ej) = Entr(T?,e;) \ Entr(1?,e;). If e; is not an ancestor of ey, Entr(T,e;) =
Entr(T?,e;) = Entr(T?,e;) \ Entr(T?, e;) holds, because Entr(T?,e;) N Entr(T?, e;,)=0.

[

Lemma 4.3. [9] Let T? be a spanning tree and let k be a positive integer with ey <
Min(7°\ T?). Under assumptions (1), (2), (3), and (4), for any edge g € Can(ey;T?, k) U
{ex} and for a spanning tree T = TP\exUg, the following relation holds :

Can(ej; TP, k) U [Can(eg; TP, k) N {e|0Te<d?g}] if 07e; =07y,

Can(e;; TP, k) if 07e; # 07g. (4.4)

Can(e;; T, k—1) = {

Proof. From the assumptions, for two edges e and f with e, f < Min(7° \ T?), e is
an ancestor of f relative to T° if and only if e is an ancestor of f relative to T?, so
we will omit the phrase 'relative to T° (or T?) for such edges. Let e; be the edge with
O7e; = OTg if it exists, and let A be the set of edges in 7Y which are ancestors of e; if
e; exists; otherwise A = (). We prove (4.4) by using the relation (4.3).

Case (1) : If e; € A then

Can(e;; T,k—1) = [Entr(1? e;) \ Entr(17?,ey)]
k—1 k—1
\ [U (Entr(17,e,)\ Entr(1%,e)) U |J Entr(17,ep)
h=j4+1,ep €A h=j+1,ep,€A
k
= Entr(T?.e;)\ |J Entr(1?,e,) = Can(e;; 17, k).
h=j+1
Case (2) : If e; € A then
Can(e;; T, k—1)
k-1 k—1
= Entr(T?.e;) \ U (Entr(T?,ep)\ Entr(T%.ex)) U | Entr(I7 e)
h=j+1,ep¢A h=j+1,ep€A

= Can(e;; T%,k) |

Entr(T?,e;) N (Entr(Tp,ek) \ kol Entr(Tp,eh)>] :

h=j+1,ep€A
If ej = e; then there is no edge e, with j <h <k and e, € A. Therefore,

Can(e;; T,k—1) = Can(e;; %, k) | J[Entr(T?,e;) N Entr(T", ex)]
= Can(ej;T", k) U[C’an ex; TP, k) N {e|dfe <8et}}

If e; is a proper ancestor of e; then Entr(T?,e;) N Entr(T?, ex) C Entr(T?, e;) , and e
satisfies j <t <k and e; € A. Hence Can(e;;T,k—1) = Can(e;; T?, k). i

Lemma 4.3 guarantees that at most one of sets Can(x;T?, k) is updated when we want
to find all children of T° or all children of T? containing eg. In Figure 5, when the state
moves from (7°,3) to (7°2), e is the edge such that d7e;=0%e; and the following
equations hold:

Can(ey;T%,2) = Can(ey; T°,3) = {e4}
Can(e;T°,2) = Can(e; T°,3) U [C’an(eg;TO, 3)N {6|8+6<8+63}}

- Q)u[{e5}m{e|8 <v2}} = {es}

10

On the other hand, when the state moves from (7°3) to (7",2), no candidate edge-set
is updated because there is no edge with 97e,=0%es :

Can(eg; TF,2) = Can(ey; T°,3) = {e4}
Can(e;;T,2) = Can(e;; T°,3) = ()

In our implementation, we use global variables candi(x) and leave. At the state
(TP, k), wvariable candi(e;) (j=1,---,k) represents the edge-set Can(e;;T?. k) and
variable leave represents the edge-set {e; | j < k and Can(e;; T?, k) # 0}. We can
check in constant time whether the current spanning tree has children or not by checking to
see if leave # (). Suppose that each edge-set is represented as an ascending ordered list
realized by a doubly linked list. We also use a data structure for a given graph G so that
two incidence vertices of any edge are found in constant time, and a data structure for the
initial spanning tree 7° so that for any vertex v other than the root, the unique edge e
with 07e = v is found in constant time. Recall that graph G satisfies:

Assumption (5). For any two edges e, f ¢ T°, if e < [then O%e < ITf.

From this assumption, one can find the edge-set Can(ey; T?, k) N {e|0Te<d g} by search-
ing the ordered list candi(eg) from the beginning. Thus we can complete this in time
proportional to the size of this edge-set. Merging two edge-sets can be executed in time
proportional to the sum of the size of two edge-sets. Therefore, it takes O(|Can(e; TP, k)| +
|Can(ex; T?, k) N {e|]0te<dtg}|) time for updating edge-sets candi(x) when the current
state (1P, k) goes to a succeeding state (7,k—1). If candi(e;) changes from empty to
nonempty then we must insert an edge e; into leave. Since leave is an ascending ordered
list, we can complete it in O(|{e€leavele<e;}|) = O(|{e;lj <t and Can(e;; T?, k) # 0}])
time.

On the other hand, when the state goes back from (T,k—1) to (7P,k), we must
reconstruct Can(x; TP k) from Can(x;T,k—1). To do this, we must restore the edges
Can(ey; TP, k) N{e|0te<dTg} from candi(e;) to candi(ey). In the Shioura-Tamura algo-
rithm [9], such a restoration is efficiently executed by recording Can(ey; T?, k)N{e|0te<d%g}
before state (T7,k) goes to (T,k—1). This idea, however, requires O(V FE) extra space
since the depth of recursive calls of the algorithm is O(V). In the rest of this section, we
discuss our idea for reducing extra space.

Let Head(ej; T?, k) denote the head-set of edges contained in Can(e;; T?, k). Then

Lemma 4.4. Under assumptions (1), (2), (3) and (4), all head-sets Head(e;;T?, k) for
j=1,--- k are mutually disjoint at any state (TP, k).
Proof. From Lemma 4.1, Head(e;; T°,V—1) = {07¢;} at the initial state (7°,V—1) if
Can(e;; T°,V—1) is nonempty. Thus the assertion is true at the initial state.

We assume that the lemma holds at the state (77,k) and prove that this holds at
the next state (7P\exUg,k—1), where g € Can(ey; TP, k) U {ex}. From Lemma 4.3, the
following relation holds:

Head(e;; TP, k) U HS if 07e; = 0y,
Head(e;; T, k) if 07e; # 0%y,

where HS is the head-set of all edges in Can(ex; T?, k) N {e|0te<d?g}. Because HS C
Head(eg; T?, k) and each Head(e;;77,k) for j=1,---,k—1 does not intersect HS, all
head-sets Head(e;; TP, k—1) for j=1,--- k=1 are mutually disjoint. [|

Head(e;; T, k—1) = { (4.5)

11

By Lemma 4.4, the head-set HS of edges in Can(g; T?, k)N{e|0Te<d?g} has no intersection
with any head set Head(e;; TP, k) (j = 1,---,k—1). Hence, if we can find HS before
restoring candi(x), it is easy to pick up the edges Can(ey; TP, k) N {el0fe<dTg} = {e €
Can(e; T, k—1)|07e € HS} from Can(ey; T, k—1).

In Figure 5, when the state goes back from (7, 1) to (T, 2), all edges in Can(ez; T°,2)N
{e|0te<d%es} = {e4} must be restored from candi(e;) = Can(e;;T% 1) = {es,e5} to
candi(ey). The head-set of Can(eq;T°,2) N {e|0Te<des} is equal to {vs}. In this case,
e4 € candi(e;) is put back into candi(es) to reconstruct Can(eqg;TY,2).

Our implementation uses global variables head(x) for representing each Head(e;; 17, k)
for j=1,---,k at state (TP k). Suppose that each head-set is represented by a (not
necessarily ascending) doubly linked list. From Lemma 4.4, we require O(V') space for
manipulating these head-sets.

Now we describe two procedures for manipulating data structures candi(x), leave,
and head(x) when the current state (77,k) goes to a succeeding state (7, k—1) or
(T k—1) goes back to (T?, k), respectively. The procedure for the first case is shown
below:

procedure update-data-structure(ey,g) ;
{ the current state (7%, k) goes to a succeeding state (T, k—1) = (T"\e,Ug, k—1) }
begin
e; := the edge in TV with 97¢; = 9%g if it exists, otherwise return ;
move {e€candi(e;)|0e < 0Tg} from candi(ey) to candi(e;) ;
if candi(e;) changes from empty to nonempty then insert e; into leave ;
HS := the head set of the edges in {e€candi(e;)|0%e < dTg} ;
for each maximal sublist of consecutive elements of HS in head(e;) do begin
record the first element of the sublist and its position in head(e;) on a stack ;
delete the sublist from head(ey) ;
add this to the end of head(e;) ;
end ;
record the position of the first element of HS in head(e;) on a stack ;
end .

When the state changes from (77,k) to (T, k—1), we must move the head-set HS of all
edges in Can(e; TP, k) N {e|0Te<d?g} from head(e;) to head(e;). At this time, we do
not move each element of HS one by one, but move each maximal sublist of consecutive
elements of HS in head(e;) to head(e;) as Figure 6. Then extra space for recording
positions of such maximal sublists is O(V') in all because the number of maximal sublists
is at most |head(e;) \ HS|+ 1, and head(e;) \ HS is unchanged until the state comes
back to (T?,k). It is easy to manipulate head(x) in the same time as candi(x),
because |HS| < |Can(ey; TP, k) N {e|0fe<dTg}|. Here we omit details. Thus the time
complexity of the procedure is O(|Can(ey; TP, k)| +|Can(ey; TP, k)N{e|0Te<dTg}|+ [{e;]j <
t and Can(e;; T?, k) # 0}]).
The second procedure restores data structures in the following way:

procedure restore-data-structure(eg,g) ;

12

head(ex) [[val | [Jw[[[[Jw[[] wfwul]
|_2 maximal
sublists
head(er) | | | [[| Ls[w[T]

U

headewy [] W[[1® [T] © []

stack

head(er) | [| [[[| Jwa| [v] | v (O

the firstLement
of maximal sublists

Figure 6: update of head(x)

{ the state (T?\exUg, k—1) goes back to (T?, k) }
begin

e; == the edge in TY with 97, = 9%g if it exists, otherwise return ;

find HS by the record of the position of its first element in head(e;) ;

delete HS from head(e;) ;

move {e€candi(e;)|07e € HS} from candi(e;) to the beginning of candi(ey) ;

if candi(e;) changes from nonempty to empty then delete e; from leave ;

move each sublist in HS to the correct place in head(ey) by using records on a stack ;
end .

Since we recorded the first element of head vertices which were added to head(e;), we can
find HS in constant time. For each edge in candi(e;), we can check in constant time
whether it is in HS, by marking all elements of HS in advance. Hence we can restore
candi(x) in O(|Can(e; T, k—1)|) = O(|Can(e;; T?, k)| + |{e € Can(ex; T?, k)|0e<0%g}|)
time. Deletion of an edge from leave is completed in constant time. The head-set HS is
returned from head(e;) to head(ey) in time proportional to the number of maximal sublists
by the information of the places in head(ey). Therefore, procedure restore-data-structure()
takes O(|Can(es; T?, k)| + [{e € Can(ey; TP, k)|0te<dg}|) time.

5 An optimal implementation and its analysis.

Finally we describe our efficient implementation and analyze its time and space complex-
ities. Our implementation is written as below.

algorithm all-spanning-trees(G) ;

13

input: a graph G with a vertex-set {vy,---, vy} and an edge-set {e}, -, egp} ;
begin
by using a depth-first search, (simultaneously) execute
- find a depth-first spanning tree 7° of G,

- sort vertices and edges to satisfy assumptions (2), (3), (4) and (5),
- for each e;€T°, candi(e;) := {e|le € T°, 0% < d%e; and Jd7e = 07¢,},
- for each e;€T", head(e;) := {07¢,},
- leave := {e; € T"|candi(e;) # 0} ;

output(“ey, eq, -+, ey_q,tree,”) ; {output 7°}
find-children() ; {of 7"}
end .
procedure find-children() ; {7*:current spanning tree}
begin
if leave =(then return ;
Q:=0;

er = the last entry of leave;
delete e from leave;
while candi(e;) # () do begin
g := the last entry of candi(ey) ;
delete g from candi(ey), and add g to the beginning of @ ;

output(“—ey, +g, tree,”) ; {output 7° := T?\exUg}
update-data-structure(eg,g) ;

find-children() ; {find children of T}
restore-data-structure(e,g) ;

output(“—g, +eg,”) ; {reconstruct T? := T°Ue;\g}

end ;
move all entries of @ to candi(ey) ;
update-data-structure(e,ex) ;
find-children() ; {find children of T? containing ey, }
restore-data-structure(ey,ex,) ;
add e, to the end of leave;
end .

Now we discuss the time complexity of our implementation. The next lemma is useful
for analyzing the time complexity.

Lemma 5.1. [9] Suppose that T is a spanning tree and that k is a positive integer
with ep < Min(T° \ T). Under assumptions (1), (2), (3), and (4), for any edge g; €
{e;}UCanl(e;;TVk) (j <k), T"=T\{er,---,ex} U{g1, -, gr} is a spanning tree.

Proof. TLet T9 =T\ {ej,-,ex} U{gj,-++,gr} for j=1,--- k. Obviously, T% is
a spanning tree. We suppose that 77 is a spanning tree. If j > 2, from Lemma 4.3,
Can(e;1;T,j—1) C Can(e;_1;T79,j—1). Thus, T9=!' =T7\e; 1Ug; 1 is a spanning tree. il

In algorithm all-spanning-tree(), the time required other than calling find-children() is
O(V+E). At the state (17,k), O(# of children of 7% not containing e;) time is taken
to execute procedure find-children() other than maintenance of data structures. Now

14

we consider the time complexities of maintenance of data structures. From the discus-
sion in Section 4, it takes O(|Can(ey; T?, k)| + |Can(eg; TP, k) N {e|0Te<dTg}| + |{e;lj <
t and Can(e;; TP, k) # 0}|) to maintain data structures when the state changes between
(TP, k) and (TP\erUg,k—1), where e; is an edge with 07e;=d%g. We consider the next
two cases:

Case A: maintenance for finding children of 7° (i.e., g € Can(e; 1", k))
Case B: maintenance for finding children of 7?7 containing ey (i.e., g = ey)

Note that Case A occurs exactly one time for each spanning tree T¢ other than 7Y, and that
Case B occurs at most one time for each spanning tree 77 and for each edge e € {e|e; <
e < Min(7°\ 7?)}. In Case A, |Can(e; T?, k)|+|Can(ex; TP, k)N{e|0te<d?g}| is bounded
by the number of children of T not containing e;. Moreover, for each edge e; with j <t
and Can(e;; TP, k) # 0, there is a child of T° not containing e;. Therefore, the time
complexity in Case A is O(# of children of T¢). In Case B, |Can(ex; T?, k)N{e|0Te<dTer}|

is bounded by the number of children of 7?7 not containing e;. From Lemma 5.1, 77

has at least |{e€Can(ey; TP, k)|0Te<d%er}| x |Can(e;; TP, k)| grandchildren which contain
neither e mnor e, Similarly, [{e;]j <t and Can(e;;T?, k) # 0}]) is bounded by the
number of grandchildren of 7% not containing e;. Thus the time complexity in Case B is

O(# of children of 7% not containing ey) + O(# of grandchildren of 7% not containing ey).

We recall that procedure find-children() checks in constant time whether 7% has children.
From the above discussion, the total required time of find-children() at the state (77,k) is

O(# of children and grandchildren of 7% not containing ey)

Thus, the total time complexity of our implementation is O(N+V+E).

Finally we consider the space complexity. At any state, edge-sets candi(e;) (j =
L,---,V—1) have no intersection with each other, and neither do head-sets head(e;) (j =
L,---,V—=1). Thus, we need O(V+E) space for candi and O(V) space for head.
Obviously, the cardinality of leave is at most V—1. As we described in Section 4, the
size of the stack recording positions maximal sublists of HS is O(V) in all. The total
size of local variables @ in find-children() is O(E) because each edge is stored in one
of global variables candi(*) or local variables . Hence, the space complexity of our
implementation is O(V+E).

Theorem 5.2. The time and space complexities of our implementation are O(N+V +E)
and O(V+E), respectively.

In this paper, we proposed an efficient algorithm for enumerating all spanning trees. This
is optimal in sense of time and space complexities.

Acknowledgements

We are greatly indebted to Prof. Yoshiko T. Ikebe of Science University of Tokyo for her
kind and valuable comments on this manuscript.

15

References

1]

2]

D. Avis and K. FUKUDA, A basis enumeration algorithm for linear systems with geo-
metric applications, Applied Mathematics Letters, 4 (1991), pp. 39-42.

D. Avis and K. FukuDpA, A pivoting algorithm for convex hulls and vertexr enumeration
of arrangements and polyhedra, Discrete and Computational Geometry, 8 (1992), pp.
295-313.

D. Avis and K. FUKUDA, Reverse search for enumeration, to appear in Discrete Applied
Mathematics.

H. N. GABow and E. W. MYERS, Finding all spanning trees of directed and undirected
graphs, SIAM J. Comput., 7 (1978), pp. 280-287.

S. KAPOOR and H. RAMESH, Algorithms for enumerating all spanning trees of undi-
rected and weighted graphs, STAM J. Comput., 24 (1995), pp. 247-265.

T. MAtsul, An algorithm for finding all the spanning trees in undirected graphs, Re-
search Report, Dept. of Mathematical Engineering and Information Physics, University
of Tokyo, Tokyo, 1993.

G. J. MINTY, A Simple Algorithm for Listing All the Trees of a Graph, IEEE Trans. on
Circuit Theory, CT-12 (1965), pp. 120.

R. C. READ and R. E. TARJAN, Bounds on backtrack algorithms for listing cycles, paths,
and spanning trees, Networks, 5 (1975), pp. 237-252.

A. SHIOURA and A. TAMURA Efficiently scanning all spanning trees of an undirected
graph, to appear in J. Operations Research Society of Japan.

R. TARJAN, Depth-first search and linear graph algorithms, SIAM J. Comput., 1 (1972),
pp- 146-160.

16

