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Abstract

We will derive two main results related to the primal simplex
method for an LP on a 0-1 polytope. One of the results is that,
for any 0-1 polytope and any two vertices of it, there exists an LP
instance for which the simplex method finds a path between them,
whose length is at most the dimension of the polytope. This proves
a well-known result that the diameter of any 0-1 polytope is bounded
by its dimension. Next we show that the upper bound obtained by the
authors for the number of distinct solutions generated by the simplex
method is tight by constructing an LP instance on a 0-1 polytope.
Keywords: Linear programming; the number of solutions; the simplex
method; 0-1 polytope.

1 Introduction

The simplex method developed by Dantzig [1] could efficiently solve a real
word linear programming problem (LP), but any good upper bound for the
number of iterations has not been known yet. Kitahara and Mizuno [4]
extend Ye’s result [8] for the Markov decision problem and obtain an upper
bound for the number of distinct solutions generated by the simplex method
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with Dantzig’s rule of pivoting for the standard form LP

(P0) min cT x,
subject to Ax = b, x ≥ 0.

Here A is an m×n matrix, b ∈ Rm, c ∈ Rn, and x ∈ Rn. The upper bound
in [4] is expressed as

nm
γP

δP

log

(
m

γP

δP

)
,

where δP and γP are the minimum and maximum values of all the positive
elements of basic feasible solutions of (P0). Kitahara and Mizuno [3] show
that the upper bound is almost tight by using a variant of Klee-Minty’s LP.
Recently Kitahara and Mizuno [5] obtain a new upper bound

m
γP γ′

D

δP δ′D
(1)

for the number of distinct solutions generated by the primal simplex method
with any rule, which chooses an entering variable whose reduced cost is neg-
ative at each iteration. Here δ′D and γ′

D are the minimum and the maximum
absolute values of all the negative elements of dual basic feasible solutions
for primal feasible bases. These results are derived from the basic property
of the primal simplex method that the objective function value strictly de-
creases whenever a solution is updated, even if the problem is degenerate.
Note that the number of distinct solutions is not identical to the number of
iterations when the problem is degenerate.

In this paper, we treat an LP on a 0-1 polytope S1 ⊂ Rd, which is a
convex hull of 0-1 vectors in Rd. Let xs and xt be any two vertices of S1.
By using the basic property of the primal simplex method, we will show
that there exists an LP instance, for which the simplex method finds a path
between xs and xt whose length is at most d. This proves a well-known
result by Naddef [6] that the diameter of any 0-1 polytope in Rd is bounded
by the dimension d.

We also show that the upper bound (1) is tight in the sense that there
exists an LP instance on a 0-1 polytope, for which the simplex method gen-

erates exactly m
γP γ′

D

δP δ′D
distinct solutions.
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2 The simplex method for an LP on a 0-1

polytope

In this section, we treat the following LP

(P1) min cT x,
subject to x ∈ S,

where S ⊂ Rd is a polytope, c ∈ Rd is a constant vector, and x ∈ Rd is a
vector of variables. Let x0 be a vertex of S. For solving the problem (P1),
we use the primal simplex method from the initial vertex x0 with any rule,
which chooses an entering variable whose reduced cost is negative at each
iteration. The simplex method actually solves a standard form LP, which is
equivalent to (P1), and generates a sequence of its basic feasible solutions.
In this section, we identify a vertex of S with a basic feasible solution of the
standard form LP. The next lemma states a basic property of the simplex
method, which is proved in Kitahara and Mizuno [5] for example.

Lemma 1 The objective function value decreases whenever a basic feasible
solution is updated by the primal simplex method with any rule, which chooses
an entering variable whose reduced cost is negative at each iteration.

Note that if the problem is degenerate, a basic feasible solution may not be
updated when a basis is updated by the simplex method.

Let M(P1) be the maximum difference of objective function values be-
tween two vertices of S and L(P1) be the minimum positive difference of
objective function values between two adjacent vertices of S. Here two ver-
tices are called adjacent when the segment connecting them is an edge of S.
Since the objective function value decreases by at least L(P1) whenever a
vertex is updated from Lemma 1, the number of distinct vertices generated
by the primal simplex method for solving (P1) is bounded by

M(P1)

L(P1)
. (2)

Using this upper bound, we obtain the next theorem.

Theorem 1 Let S1 ⊂ Rd be any 0-1 polytope and let c be any d-dimensional
integral vector. Then the primal simplex method for solving the LP

(P2) min cT x,
subject to x ∈ S1

starting from any vertex of S1 generates at most C distinct vertices, where
C =

∑d
i=1 |ci|.
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Proof: Since any vertex of S1 is a 0-1 vector, the difference of objective
function values between two vertices of S1 is bounded by

∑d
i=1 |ci|, that is,

M(P2) ≤ C.

The objective function value at any vertex is an integer, because the vector
c is integral. So the minimum positive difference of objective function values
between two adjacent vertices is at least one, that is,

L(P2) ≥ 1.

Hence the number of distinct vertices generated by the primal simplex method
starting from any initial vertex is bounded by C from (2). ¥

A finite sequence {xk|k = 0, 1, 2, . . . , `} of vertices of S1 is called a path of
the length ` on S1, if any two consecutive vertices xk and xk+1 are adjacent.
A sequence of distinct vertices generated by the simplex method is a path.
We obtain the next result for the length of a path between two vertices on a
0-1 polytope.

Theorem 2 Let S1 ⊂ Rd be any 0-1 polytope and xs and xt be any two
vertices of S1. Then there exists an LP instance, for which the simplex method
with Bland’s rule [2] (or any anticycling rule) finds a path between xs and
xt whose length is at most d.

Proof: Let xt = (xt
1, x

t
2, . . . , x

t
d)

T . We define a vector c = (c1, c2, . . . , cd)
T

by

ci =

{
−1 if xt

i = 1,
1 if xt

i = 0.

Obviously xt is the unique optimal vertex of (P2). The simplex method
starting from xs with Bland’s rule always finds the optimal vertex xt in a
finite number of iterations. Then the number of distinct vertices generated
by the simplex method is at most

C =
d∑

i=1

|ci| = d

from Theorem 1. Hence the simplex method finds a path between xs and xt

whose length is at most d. ¥
The diameter of a polytope is the maximum length of the shortest paths

between its two vertices. From the theorem above, we can easily obtain a
well-known result by Naddef [6] for the diameter of any 0-1 polytope.
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Corollary 1 The diameter of any 0-1 polytope in Rd is at most d.

By using this result, Naddef [6] shows that the Hirsch conjecture is true
for 0-1 polytopes, although Santos [7] recently constructs a counterexample
of the conjecture for general polytopes.

3 Tightness of the upper bound by Kitahara

and Mizuno

Recall that the standard form LP is expressed as

(P0) min cT x,
subject to Ax = b, x ≥ 0.

Let x0 be a basic feasible solution of the problem (P0). For solving the
problem (P0) from the initial basic feasible solution x0, we use the primal
simplex method with any rule, which chooses an entering variable whose
reduced cost is negative at each iteration. Then the objective function value
decreases whenever an iterate is updated.

Kitahara and Mizuno [5] show that the maximum difference of objective
function values between two basic feasible solutions of (P0) is bounded by
mγP γ′

D and that the minimum positive difference of objective function values
between two adjacent basic feasible solutions of (P0) is at least δP δ′D, that is,

M(P0) ≤ mγP γ′
D and L(P0) ≥ δP δ′D.

Hence the ratio (2) is bounded by (1) which is an upper bound derived in [5]
for the number of distinct solutions generated by the primal simplex method.
We show that the upper bound is tight in the next theorem.

Theorem 3 The upper bound (1) is tight in the sense that there exists an
LP instance on a 0-1 polytope for which the primal simplex method generates

exactly m
γP γ′

D

δP δ′D
distinct solutions.

Proof: We define an LP instance on the m-dimensional cube

min −eT x,
subject to x ≤ e,

x ≥ 0

or its standard form LP

(P3) min −eT x,
subject to x + u = e,

x ≥ 0, u ≥ 0,
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where x = (x1, x2, . . . , xm)T is a vector of variables, u = (u1, u2, . . . , um)T is
a vector of slacks, and e = (1, 1, . . . , 1)T . The dual problem of (P3) is

(D3) max eT y,
subject to y ≤ −e,

y ≤ 0,

where y = (y1, y2, . . . ,m)T is a vector of dual variables.
It is easy to see that for any subset K ⊂ {1, 2, . . . ,m} the point (xK ,uK)

defined by
xK

i = 1, uK
i = 0 for any i ∈ K,

xK
i = 0, uK

i = 1 for any i /∈ K,
xK = (xK

1 , xK
2 , . . . , xK

m)T ,
uK = (uK

1 , uK
2 , . . . , uK

m)T

(3)

is a basic feasible solution of (P3) and conversely any basic feasible solution
is expressed as (3) for some K ⊂ {1, 2, . . . , n}. Thus the feasible region of
the problem (P3) is a 0-1 polytope and we have that

δP = 1 and γP = 1,

where δP and γP are the minimum and maximum values of all the positive
elements of basic feasible solutions of (P3). Similarly for any subset K ⊂
{1, 2, . . . ,m} the point yK defined by

yK
i = −1 for any i ∈ K,

yK
i = 0 for any i /∈ K,

yK = (yK
1 , yK

2 , . . . , yK
m)T

is a basic solution of (D3) and any basic solution is expressed as above. Hence

δ′D = 1 and γ′
D = 1,

where δ′D and γ′
D are the minimum and the maximum absolute values of all

the negative elements of basic feasible solutions of (D3) for primal feasible
bases.

Note that the dual basic solution yK is feasible only when K = {1, 2, . . . , n}.
So the optimal solution of (P3) is

x∗ = (1, 1, . . . , 1)T , u∗ = (0, 0, . . . , 0)T .

Suppose that the initial solution is

x0 = (0, 0, . . . , 0)T , u0 = (1, 1, . . . , 1)T .
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Since the feasible region of (P3) is the m-dimensional cube, the length of
the shortest path between (x0,u0) and (x∗, u∗) is m. So the primal simplex
method starting from the initial solution (x0,u0) finds the optimal solution
(x∗,u∗) by generating at least m distinct solutions. On the other hand,

the number of distinct solutions generated is at most m
γP γ′

D

δP δ′D
, which is equal

to m. Hence the primal simplex method generates exactly m
γP γ′

D

δP δ′D
distinct

solutions. ¥
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