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Simpler Exchange Axioms for M-concave Functions 
on Generalized Polymatroids

Kazuo Murota · Akiyoshi Shioura

Abstract M♮-concave functions form a class of discrete concave functions in discrete convex analysis,

and are defined by a certain exchange axiom. We show in this paper that M♮-concave functions can be

characterized by a combination of two simpler exchange properties. It is also shown that for a function

defined on an integral polymatroid, a much simpler exchange axiom characterizes M♮-concavity.
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1 Introduction and Results

Discrete convex analysis [14] is a theoretical framework for well-solved nonlinear discrete optimization

problems, where a class of discrete concave functions, called M♮-concave functions, plays a primary role.

The concept of M♮-concave function enjoys various nice mathematical properties, and efficient algorithms

for discrete optimization problems with M♮-concave objective functions have been proposed [6,14].

M♮-concave functions have also found applications in various research fields such as operations re-

search, mathematical economics, and game theory (see, e.g., [7,8,10,15,17,22]). An example is the re-

source allocation problem in operations research [10,12,20]. While the objective functions of the resource

allocation problem are mostly assumed to be separable concave until mid 90s, M♮-concavity provides a

more general framework with nonseparable objective functions and efficient algorithms for the generalized

problem.

The application of M♮-concavity to mathematical economics was initiated by Danilov et al. [1,2],

where the existence of a Walrasian equilibrium in an exchange economy with indivisible goods is shown.

The connection between discrete convex analysis and mathematical economics was accelerated by the

observation of Fujishige–Yang [9] that M♮-concavity for a set function is equivalent to the so-called

“gross substitutes” property of Kelso–Crawford [11]. See [15] for more accounts on the application to

mathematical economics.

In this paper, we discuss exchange axioms for M♮-concave functions. Let n be a positive integer and

N = {1, 2, . . . , n}. A function f : Zn → R∪ {−∞} is said to be M♮-concave if domZ f is nonempty and f
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satisfies the following exchange property:

(M♮-EXC[Z]) ∀x, y ∈ Zn, ∀i ∈ supp+(x− y) :

f(x) + f(y) ≤ max
[
f(x− χi) + f(y + χi),

max
j∈supp−(x−y)

{f(x− χi + χj) + f(y + χi − χj)}
]
,

where domZ f = {x ∈ Zn | f(x) > −∞} is the effective domain of f ,

supp+(z) = {i ∈ N | z(i) > 0}, supp−(z) = {i ∈ N | z(i) < 0} (z ∈ Zn),

and for i ∈ N , χi ∈ {0, 1}n is the i-th unit vector, i.e., χi(i) = 1, χi(j) = 0 (j ∈ N \ {i}).
The main result of this paper, Theorem 1.1 below, says that M♮-concavity of functions defined on

integer lattice points can be characterized by the combination of the following two exchange properties,

where x(N) =
∑

i∈N x(i):

(P1[Z]) ∀x, y ∈ Zn with x(N) < y(N) :

f(x) + f(y) ≤ max
j∈supp−(x−y)

{f(x+ χj) + f(y − χj)},

(P2[Z]) ∀x, y ∈ Zn with x(N) = y(N), ∀i ∈ supp+(x− y) :

f(x) + f(y) ≤ max
j∈supp−(x−y)

{f(x− χi + χj) + f(y + χi − χj)}.

The first exchange property (P1[Z]) applies to (x, y) with different component sums and ensures the

possibility of making the pair closer with an appropriate unit vector χj . The second exchange property

(P2[Z]) applies to (x, y) with equal component sums and excludes the first possibility in (M♮-EXC[Z]).

Theorem 1.1 A function f : Zn → R ∪ {−∞} is M♮-concave if and only if domZ f ̸= ∅ and f satisfies

(P1[Z]) and (P2[Z]).

Moreover, we show that the first property (P1[Z]) alone characterizes M♮-concavity if the effective

domain domZ f is an M♮-convex set satisfying a certain condition; the definitions of an M♮-convex set

and an integral polymatroid will be given in Section 2.

Theorem 1.2 Let f : Zn → R ∪ {−∞} be a function with domZ f ̸= ∅.
(i) Suppose that domZ f satisfies one of the following two conditions:

(a) ∀x, y ∈ domZ f , ∃z ∈ domZ f : z ≤ x, z ≤ y,

(b) ∀x, y ∈ domZ f , ∃z ∈ domZ f : z ≥ x, z ≥ y.

Then, f is M♮-concave if and only if it satisfies (P1[Z]).
(ii) Suppose that domZ f is an integral polymatroid. Then, f is M♮-concave if and only if it satisfies

(P1[Z]).

M♮-concavity for set functions can be naturally defined through the one-to-one correspondence between

set functions defined on 2N and functions defined on {0, 1}n. A set function f : 2N → R ∪ {−∞} is said
to be M♮-concave if dom f ̸= ∅ and f satisfies the following property1:

(M♮-EXC[B]) ∀X,Y ⊆ N, ∀i ∈ X \ Y :

f(X) + f(Y )

≤ max
[
f(X − i) + f(Y + i), max

j∈Y \X
{f(X − i+ j) + f(Y + i− j)}

]
.

1 B stands for Binary, referring to functions on {0, 1}n.
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Here we use short-hand notations

X − i = X \ {i}, Y + i = Y ∪ {i},
X − i+ j = (X \ {i}) ∪ {j}, Y + i− j = (Y ∪ {i}) \ {j},

and denote dom f = {X ⊆ N | f(X) > −∞}.
For set functions, Theorems 1.1 and 1.2 can be specialized as follows, where the following exchange

properties with cardinality restrictions are used:

(P1[B]) ∀X,Y ⊆ N with |X| < |Y | :
f(X) + f(Y ) ≤ max

j∈Y \X
{f(X + j) + f(Y − j)}

(P2[B]) ∀X,Y ⊆ N with |X| = |Y |, ∀i ∈ X \ Y :

f(X) + f(Y ) ≤ max
j∈Y \X

{f(X − i+ j) + f(Y + i− j)}.

Corollary 1.3 A set function f : 2N → R∪{−∞} is M♮-concave if and only if dom f ̸= ∅ and f satisfies

(P1[B]) and (P2[B]).

Corollary 1.4 Let f : 2N → R∪{−∞} be a set function such that dom f contains the empty set. Then,

f is M♮-concave if and only if it satisfies (P1[B]).

It is noted that if ∅ ∈ dom f and f is M♮-concave, then dom f is necessarily the family of independent

sets of a matroid.

2 Proof of Theorem 1.1

We prove Theorem 1.1 by showing Theorem 2.1 below that clarifies the relationship among various

exchange axioms including (M♮-EXC[Z]), (P1[Z]), and (P2[Z]).
By definition, an M♮-concave function f : Zn → R∪{−∞} satisfies the exchange property (M♮-EXC[Z]).

By setting χ0 = 0, the exchange property (M♮-EXC[Z]) can be rewritten in a more compact form as

∀x, y ∈ domZ f, ∀i ∈ supp+(x− y) :

f(x) + f(y) ≤ max
j∈supp−(x−y)∪{0}

{f(x− χi + χj) + f(y + χi − χj)}.

It is easy to see that the effective domain S = domZ f of an M♮-concave function satisfies the following

property:

(B♮-EXC[Z]) ∀x, y ∈ S, ∀i ∈ supp+(x− y), (i) or (ii) (or both) holds:

(i) x− χi ∈ S, y + χi ∈ S,

(ii) x− χi + χj ∈ S, y + χi − χj ∈ S for some j ∈ supp−(x− y).

For a nonempty set S ⊆ Zn, we say that S is an M♮-convex set (an integral generalized polymatroid [4,5])

if it satisfies (B♮-EXC[Z]). Hence, a nonempty set S ⊆ Zn is an M♮-convex set if and only if its indicator

function δS : Zn → {0,−∞} given by

δS(x) =

{
0 (if x ∈ S),

−∞ (otherwise)

is an M♮-concave function.
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An example of an M♮-convex set is (the set of integral vectors in) an integral polymatroid. A nonempty

set P ⊆ Zn
+ of nonnegative integral vectors is called an integral polymatroid if it satisfies the following

condition (see, e.g., [23]):

(i) for y ∈ P, x ∈ Zn
+, if x ≤ y then x ∈ P,

(ii) if x, y ∈ P, x(N) < y(N), then x+ χj ∈ P for some j ∈ supp−(x− y).

Every integral polymatroid is an M♮-convex set (see, e.g., [6,14,16]).

Theorem 2.1 below refers to the following additional exchange properties:

(P3[Z]) ∀x, y ∈ domZ f with x(N) < y(N), ∀i ∈ supp+(x− y) :

f(x) + f(y) ≤ max
j∈supp−(x−y)

{f(x− χi + χj) + f(y + χi − χj)},

(P4[Z]) ∀x, y ∈ domZ f with x(N) > y(N), ∀i ∈ supp+(x− y) :

f(x) + f(y) ≤ max
j∈supp−(x−y)∪{0}

{f(x− χi + χj) + f(y + χi − χj)},

and the following local exchange properties:

(M♮-EXC[Z]loc)
(L1[Z]) ∀x ∈ Zn, ∀i, j ∈ N : f(x+ χi + χj) + f(x) ≤ f(x+ χi) + f(x+ χj),

(L2[Z]) ∀x ∈ Zn, ∀i, j, k ∈ N with k ̸∈ {i, j} :
f(x+ χi + χj) + f(x+ χk)

≤ max [f(x+ χi + χk) + f(x+ χj), f(x+ χj + χk) + f(x+ χi)] ,

(L3[Z]) ∀x ∈ Zn, ∀i, j, k, l ∈ N, {i, j} ∩ {k, l} = ∅ :
f(x+ χi + χj) + f(x+ χk + χl)

≤ max
[
f(x+ χi + χk) + f(x+ χj + χl), f(x+ χj + χk) + f(x+ χi + χl)

]
.

Here we allow the possibilities of i = j in (L1[Z]) and in (L2[Z]), and i = j or k = l in (L3[Z]).

Theorem 2.1 For a function f : Zn → R ∪ {−∞} with domZ f ̸= ∅, the following conditions are

equivalent:

(i) f satisfies (M♮-EXC[Z]),
(ii) f satisfies (P1[Z]) and (P2[Z]),
(iii) f satisfies (P2[Z]), (P3[Z]), and (P4[Z]),
(iv) f satisfies (P1[Z]), (P2[Z]), (P3[Z]), and (P4[Z]),
(v) domZ f is an M♮-convex set and f satisfies (M♮-EXC[Z]loc).

In Theorem 2.1, the implications

(iv) (v) (i) (M♮-EXC[Z])
↓ ↘ ↗

(P1[Z])&(P2[Z]) (ii) (iii)

are easy to see. We prove the implication “(i) =⇒ (v)” in Section 2.1 and “(v) =⇒ (iv)” in Section 2.2.

The proof for the implication “(ii) =⇒ (iii)” is similar to that for “(v) =⇒ (iv)” and given in Section 2.3.

(iv)
Sec. 2.2⇐= (v)

Sec. 2.1⇐= (i) (M♮-EXC[Z])
↓ ↘ ↗

(P1[Z])&(P2[Z]) (ii)
Sec. 2.3
=⇒ (iii)

It should be clear that our primary interest lies in the equivalence of (i) and (ii) stated in Theorem

2.1, while the other conditions (iii) to (v) are introduced for the proof.
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Remark 2.2 The equivalence of (i) and (iv) is already shown in [16] (see Theorem 4.1), and the equivalence

of (i) and (v) has been known to experts (see Theorem 4.2). Thus the following implications are known:

↙ ↘
(iv) (v) ←→ (i) (M♮-EXC[Z])
↓ ↘ ↗

(P1[Z])&(P2[Z]) (ii) (iii)
⊓⊔

2.1 Proof of “(i) =⇒ (v)” in Theorem 2.1

The condition (B♮-EXC[Z]) for domZ f is easy to see from the condition (M♮-EXC[Z]). Hence, domZ f is

an M♮-convex set. The conditions (L1[Z]) and (L2[Z]) in (M♮-EXC[Z]loc) are immediate consequences of

(M♮-EXC[Z]), whereas the third condition (L3[Z]) is derived as follows.

We first consider the case where i, j, k, l are distinct. To simplify notations we assume i = 1, j = 2,

k = 3, l = 4, and write α1 = f(x + χ1), α23 = f(x + χ2 + χ3), α134 = f(x + χ1 + χ3 + χ4), and so on.

Then the condition (L3[Z]) can be rewritten as

α12 + α34 ≤ max{α13 + α24, α14 + α23}.

We may assume α12 > −∞ and α34 > −∞ since otherwise this inequality is trivially true.

To prove the inequality by contradiction, suppose that

α12 + α34 > max{α13 + α24, α14 + α23}. (2.1)

With the notation A = α12 + α34 we obtain

A = α12 + α34 ≤ max{α1 + α234, α13 + α24, α14 + α23} = α1 + α234 (2.2)

from (M♮-EXC[Z]) (with i = 2) and (2.1). Similarly, we have

A ≤ α2 + α134, A ≤ α3 + α124, A ≤ α4 + α123. (2.3)

On the other hand, we have

α1 + α123 ≤ α12 + α13, (2.4)

α2 + α234 ≤ α23 + α24, (2.5)

α3 + α134 ≤ α13 + α34, (2.6)

α4 + α124 ≤ α14 + α24 (2.7)

by (M♮-EXC[Z]). By adding the four inequalities in (2.2) and (2.3) and using the inequalities in (2.4)–(2.7)

and (2.1), we obtain

4A ≤ (α1 + α234) + (α2 + α134) + (α3 + α124) + (α4 + α123)

= (α1 + α123) + (α2 + α234) + (α3 + α134) + (α4 + α124)

≤ (α12 + α13) + (α23 + α24) + (α13 + α34) + (α14 + α24)

= (α12 + α34) + (α23 + α14) + 2(α13 + α24)

< 4A.

This is a contradiction, and hence (L3[Z]) is shown for distinct i, j, k, l.

When i = j, the above proof still works with the understanding that α12 = f(x+χ1+χ2) = f(x+2χ1)

and α123 = f(x+ 2χ1 + χ3), etc. Similarly in the case of k = l.
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2.2 Proof of “(v) =⇒ (iv)” in Theorem 2.1

We assume that domZ f satisfies (B♮-EXC[Z]) and f satisfies (M♮-EXC[Z]loc), and show that the four

conditions (P1[Z]), (P2[Z]), (P3[Z]), and (P4[Z]) hold.
We first present two lemmas on the properties of a set S ⊆ Zn satisfying (B♮-EXC[Z]).

Lemma 2.3 If a nonempty set S ⊆ Zn satisfies (B♮-EXC[Z]), then for any x, y ∈ S with x(N) < y(N)

there exists some j ∈ supp−(x− y) such that y − χj ∈ S.

Proof We prove the claim by induction on ∥x − y∥1. If ∥x − y∥1 = 1, then we have x = y − χj ∈ S for

the unique j ∈ supp−(x− y). Hence, the claim holds.

For the induction step, we assume ∥x− y∥1 > 1. If supp+(x− y) = ∅, then (B♮-EXC[Z]) applied to y,

x, and an arbitrarily chosen j ∈ supp+(y − x) implies y − χj ∈ S. Hence, we assume supp+(x− y) ̸= ∅,
and take any i ∈ supp+(x− y). Then, (B♮-EXC[Z]) applied to x, y, and i implies that there exists some

k ∈ supp−(x−y)∪{0} such that x−χi+χk ∈ S. Putting x′ = x−χi+χk, we have x
′(N) ≤ x(N) < y(N)

and ∥x′− y∥1 < ∥x− y∥1. Hence, we can apply the induction hypothesis to x′ and y to obtain y−χj ∈ S

for some j ∈ supp−(x′ − y) ⊆ supp−(x− y). This concludes the proof. ⊓⊔

Lemma 2.4 If a nonempty set S ⊆ Zn satisfies (B♮-EXC[Z]), then for any x, y ∈ S with x(N) ≤ y(N)

and i ∈ supp+(x− y), there exists j ∈ supp−(x− y) such that y + χi − χj ∈ S.

Proof By (B♮-EXC[Z]) applied to x, y, and i ∈ supp+(x − y), we have y + χi − χj ∈ S for some j ∈
supp−(x−y)∪{0}. If j ̸= 0, then we are done. Suppose that j = 0 holds. Since x(N) ≤ y(N) < (y+χi)(N),

we can apply Lemma 2.3 to obtain y+χi−χj ∈ S for some j ∈ supp−(x− (y+χi)) = supp−(x− y). ⊓⊔

In the following, we prove the four conditions (P1[Z]), (P2[Z]), (P3[Z]), and (P4[Z]) in turn. We first

prove (P1[Z]).

Lemma 2.5 For a function f : Zn → R ∪ {−∞}, if domZ f satisfies (B♮-EXC[Z]) and f satisfies

(M♮-EXC[Z]loc), then (P1[Z]) holds.

Proof To prove (P1[Z]) by contradiction, we assume that the set of pairs

D = {(x, y) | x, y ∈ domZ f, x(N) < y(N),

f(x) + f(y) > f(x+ χj) + f(y − χj) (∀j ∈ supp−(x− y))}

is nonempty. Take a pair (x, y) ∈ D with ∥x− y∥1 minimum. For a fixed ε > 0, consider a vector p ∈ Rn

with each component p(j) (j ∈ N) given by

p(j) =


f(x)− f(x+ χj) (if j ∈ supp−(x− y), x+ χj ∈ domZ f),

f(y − χj)− f(y) + ε (if j ∈ supp−(x− y), x+ χj ̸∈ domZ f,

y − χj ∈ domZ f),

0 (otherwise).

We use notation fp(x) = f(x) + ⟨p, x⟩ for x ∈ Zn.

Claim 1:

fp(x+ χj) = fp(x) (∀j ∈ supp−(x− y) with x+ χj ∈ domZ f), (2.8)

fp(y − χj) < fp(y) (∀j ∈ supp−(x− y)). (2.9)

(Proof of Claim 1) The equality (2.8) is obvious from the definition of p. If x+ χj ∈ domZ f , then the

inequality (2.9) follows from (2.8) and

fp(x) + fp(y) > fp(x+ χj) + fp(y − χj).
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If x+χj ̸∈ domZ f , (2.9) follows from the fact that fp(y−χj)−fp(y) = −ε or −∞ depending on whether

y − χj ∈ domZ f or not.

In the following, we consider the two cases and derive a contradiction in each case.

(Case 1): y(N)− x(N) ≥ 2, (Case 2): y(N)− x(N) = 1.

We first consider Case 1. Since x(N) < y(N), Lemma 2.3 implies y − χj0 ∈ domZ f for some j0 ∈
supp−(x− y).

Claim 2: (x, y′) ∈ D for y′ = y − χj0 .

(Proof of Claim 2) Since y′(N) = y(N)− 1 > x(N), we only have to show that

fp(x) + fp(y
′) > fp(x+ χj) + fp(y

′ − χj) (∀j ∈ supp−(x− y′)). (2.10)

Since this inequality is obvious when x+ χj ̸∈ domZ f , we assume that x+ χj ∈ domZ f . Then we have

fp(x) = fp(x+ χj) by (2.8). We also have

fp(y
′ − χj) = [fp(y) + fp(y − χj0 − χj)]− fp(y)

≤ [fp(y − χj0) + fp(y − χj)]− fp(y)

< fp(y − χj0) = fp(y
′)

by (M♮-EXC[Z]loc) ((L1[Z]), in particular) and (2.9). Therefore, (2.10) holds. This establishes Claim 2.

Claim 2 contradicts the choice of (x, y) since ∥x−y′∥1 = ∥x−y∥1−1. Therefore, Case 1 cannot occur.

We next consider Case 2.

Claim 3: There exist i0 ∈ supp+(x− y) and j0 ∈ supp−(x− y) such that y + χi0 − χj0 ∈ domZ f and

fp(y + χi0 − χj0) ≥ fp(y + χi0 − χj) (∀j ∈ supp−(x− y)). (2.11)

(Proof of Claim 3) We first note that supp+(x − y) ̸= ∅. Indeed, if supp+(x − y) = ∅, then we have

x = y−χi and y = x+χi for the unique element i ∈ supp−(x−y), and f(x)+f(y) = f(x+χi)+f(y−χi),

a contradiction to (x, y) ∈ D.
Take some i0 ∈ supp+(x− y). Lemma 2.4 implies y + χi0 − χj ∈ domZ f for some j ∈ supp−(x− y).

Any j ∈ supp−(x− y) that maximizes fp(y + χi0 − χj) serves as j0.

Claim 4: (x, y′) ∈ D for y′ = y + χi0 − χj0 .

(Proof of Claim 4) Since y′(N) = y(N) > x(N), we only have to show that

fp(x) + fp(y
′) > fp(x+ χj) + fp(y

′ − χj) (∀j ∈ supp−(x− y′)). (2.12)

Since this inequality is obvious when x+ χj ̸∈ domZ f , we assume that x+ χj ∈ domZ f . Then we have

fp(x) = fp(x+ χj) by (2.8). We also have

fp(y
′ − χj)

= [fp(y) + fp(y + χi0 − χj0 − χj)]− fp(y)

≤ max{fp(y + χi0 − χj0) + fp(y − χj),

fp(y + χi0 − χj) + fp(y − χj0)} − fp(y)

≤ fp(y + χi0 − χj0) + max{fp(y − χj)− fp(y), fp(y − χj0)− fp(y)}
< fp(y + χi0 − χj0) = fp(y

′)

by (M♮-EXC[Z]loc) ((L2[Z]), in particular), (2.11), and (2.9). Therefore, (2.12) holds. This establishes

Claim 4.

Claim 4 contradicts the choice of (x, y) since ∥x − y′∥1 = ∥x − y∥1 − 2. Therefore, Case 2 cannot

occur either. Hence, D must be empty, which means that (P1[Z]) is true. This concludes the proof of the

lemma. ⊓⊔
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We next prove (P2[Z]) and (P3[Z]) simultaneously.

Lemma 2.6 For a function f : Zn → R ∪ {−∞}, if domZ f satisfies (B♮-EXC[Z]) and f satisfies

(M♮-EXC[Z]loc), then (P2[Z]) and (P3[Z]) hold; that is, for any x, y ∈ Zn with x(N) ≤ y(N) and

i ∈ supp+(x− y) we have

f(x) + f(y) ≤ max
j∈supp−(x−y)

{f(x− χi + χj) + f(y + χi − χj)}. (2.13)

Proof To prove (2.13) by contradiction, we assume that there exists a pair (x, y) for which (2.13) fails.

That is, we assume that the set of pairs

D = {(x, y) | x, y ∈ domZ f, x(N) ≤ y(N), ∃i∗ ∈ supp+(x− y) s.t.

f(x) + f(y) > f(x− χi∗ + χj) + f(y + χi∗ − χj)

(∀j ∈ supp−(x− y))}

is nonempty. Take a pair (x, y) ∈ D with ∥x− y∥1 minimum, and fix i∗ ∈ supp+(x− y) appearing in the

definition of D. We have ∥x − y∥1 ≥ 3 by (M♮-EXC[Z]loc). For a fixed ε > 0, consider a vector p ∈ Rn

with each component p(j) (j ∈ N) given by

p(j) =


f(x)− f(x− χi∗ + χj) (if j ∈ supp−(x− y), x− χi∗ + χj ∈ domZ f),

f(y + χi∗ − χj)− f(y) + ε (if j ∈ supp−(x− y), x− χi∗ + χj ̸∈ domZ f,

y + χi∗ − χj ∈ domZ f),

0 (otherwise).

Recall the notation fp(x) = f(x) + ⟨p, x⟩ for x ∈ Zn.

Claim 1:

fp(x− χi∗ + χj) = fp(x)

(∀j ∈ supp−(x− y) with x− χi∗ + χj ∈ domZ f), (2.14)

fp(y + χi∗ − χj) < fp(y) (∀j ∈ supp−(x− y)). (2.15)

(Proof of Claim 1) The equality (2.14) is obvious from the definition of p. If x − χi∗ + χj ∈ domZ f ,

then (2.15) follows from (2.14) and

fp(x) + fp(y) > fp(x− χi∗ + χj) + fp(y + χi∗ − χj).

If x−χi∗ +χj ̸∈ domZ f , (2.15) follows from the fact that fp(y+χi∗−χj)−fp(y) = −ε or −∞ depending

on whether y + χi∗ − χj ∈ domZ f or not.

In the following, we consider the following two cases and derive a contradiction in each case.

(Case 1): x(N) < y(N), (Case 2): x(N) = y(N).

We first consider Case 1.

Claim 2: There exists j0 ∈ supp−(x− y) such that y − χj0 ∈ domZ f and

fp(y − χj0) ≥ fp(y − χj) (∀j ∈ supp−(x− y)). (2.16)

(Proof of Claim 2) Since x(N) < y(N), Lemma 2.3 implies y−χj ∈ domZ f for some j ∈ supp−(x−y).

Any j ∈ supp−(x− y) that maximizes fp(y − χj) serves as j0.

Claim 3: (x, y′) ∈ D for y′ = y − χj0 .
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(Proof of Claim 3) First note that x(N) ≤ y(N)− 1 = y′(N). We are to show

fp(x) + fp(y
′) > fp(x− χi∗ + χj) + fp(y

′ + χi∗ − χj) (∀j ∈ supp−(x− y′)). (2.17)

Since this inequality is obvious when x−χi∗ +χj ̸∈ domZ f , we assume that x−χi∗ +χj ∈ domZ f . Then

we have fp(x) = fp(x− χi∗ + χj) by (2.14). We also have

fp(y
′ + χi∗ − χj)

= [fp(y + χi∗ − χj0 − χj) + fp(y)]− fp(y)

≤ max{fp(y − χj0) + fp(y + χi∗ − χj),

fp(y − χj) + fp(y + χi∗ − χj0)} − fp(y)

≤ fp(y − χj0) + max{fp(y + χi∗ − χj)− fp(y), fp(y + χi∗ − χj0)− fp(y)}
< fp(y − χj0) = fp(y

′),

where the first inequality is due to (M♮-EXC[Z]loc) ((L2[Z]), in particular), and the second and third

inequalities are by (2.16) and (2.15). Hence follows (2.17), establishing Claim 3.

Claim 3 contradicts the choice of (x, y) since ∥x−y′∥1 = ∥x−y∥1−1. Therefore, Case 1 cannot occur.

We next consider Case 2. Note that ∥x− y∥1 ≥ 4 in this case.

Claim 4: There exist i0 ∈ supp+(x− y) and j0 ∈ supp−(x− y) such that y + χi0 − χj0 ∈ domZ f and

fp(y + χi0 − χj0) ≥ fp(y + χi0 − χj) (∀j ∈ supp−(x− y)). (2.18)

In addition, we can take such i0 with i0 ̸= i∗ if x(i∗) = y(i∗) + 1.

(Proof of Claim 4) Let i0 be any element in supp+(x − y); if x(i∗) = y(i∗) + 1, then we may assume

i0 ̸= i∗ since
∑

i∈supp+(x−y)(x(i) − y(i)) ≥ 2 holds. By Lemma 2.4, there exists j ∈ supp−(x − y) such

that y + χi0 − χj ∈ domZ f . Any j ∈ supp−(x− y) that maximizes fp(y + χi0 − χj) serves as j0.

Claim 5: (x, y′) ∈ D for y′ = y + χi0 − χj0 .

(Proof of Claim 5) First note that x(N) = y(N) = y′(N) and i∗ ∈ supp+(x − y′) by the choice of y′.

We are to show

fp(x) + fp(y
′) > fp(x− χi∗ + χj) + fp(y

′ + χi∗ − χj) (∀j ∈ supp−(x− y′)). (2.19)

Since this inequality is obvious when x−χi∗ +χj ̸∈ domZ f , we assume that x−χi∗ +χj ∈ domZ f . Then

we have fp(x) = fp(x− χi∗ + χj) by (2.14). We also have

fp(y
′ + χi∗ − χj)

= [fp(y + χi0 + χi∗ − χj0 − χj) + fp(y)]− fp(y)

≤ max{fp(y + χi0 − χj0) + fp(y + χi∗ − χj),

fp(y + χi0 − χj) + fp(y + χi∗ − χj0)} − fp(y)

≤ fp(y + χi0 − χj0)

+ max{fp(y + χi∗ − χj)− fp(y), fp(y + χi∗ − χj0)− fp(y)}
< fp(y + χi0 − χj0) = fp(y

′),

where the first inequality is due to (M♮-EXC[Z]loc) ((L3[Z]), in particular), and the second and third

inequalities are by (2.18) and (2.15). Hence follows (2.19), establishing Claim 5.

Claim 5 contradicts the choice of (x, y), since ∥x − y′∥1 = ∥x − y∥1 − 2. Therefore, Case 2 cannot

occur, either. Hence, D must be empty, which means that (2.13) is true. This concludes the proof of the

lemma ⊓⊔

We finally prove (P4[Z]).
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Lemma 2.7 For a function f : Zn → R ∪ {−∞}, if domZ f satisfies (B♮-EXC[Z]) and f satisfies

(M♮-EXC[Z]loc), then f satisfies (P4[Z]).

Proof To prove (P4[Z]) by contradiction, we assume that the set of pairs

D = {(x, y) | x, y ∈ domZ f, x(N) > y(N), ∃i∗ ∈ supp+(x− y) s.t.

f(x) + f(y) > f(x− χi∗ + χj) + f(y + χi∗ − χj)

(∀j ∈ supp−(x− y) ∪ {0})}

is nonempty; recall that χ0 = (0, 0, . . . , 0). We note that ∥x − y∥1 ≥ 2 for every (x, y) ∈ D. Indeed, if
∥x − y∥1 = 1, then we have x = y + χi and y = x − χi with the unique element i ∈ supp+(x − y), and

therefore f(x)+ f(y) = f(x−χi)+ f(y+χi) holds, implying that (x, y) /∈ D. Take a pair (x, y) ∈ D with

∥x− y∥1 minimum, and fix i∗ ∈ supp+(x− y) appearing in the definition of D.
For a fixed ε > 0, define p ∈ Rn as follows. The component p(i∗) is defined by

p(i∗) =


f(x− χi∗)− f(x) (if x− χi∗ ∈ domZ f),

f(y)− f(y + χi∗)− ε (if x− χi∗ ̸∈ domZ f, y + χi∗ ∈ domZ f),

0 (if x− χi∗ ̸∈ domZ f, y + χi∗ ̸∈ domZ f).

The component p(j) for each j ∈ supp−(x− y) is defined by

p(j) =


f(x)− f(x− χi∗ + χj) + p(i∗) (if x− χi∗ + χj ∈ domZ f),

f(y + χi∗ − χj)− f(y) + p(i∗) + ε

(if x− χi∗ + χj ̸∈ domZ f, y + χi∗ − χj ∈ domZ f),

0 (if x− χi∗ + χj ̸∈ domZ f, y + χi∗ − χj ̸∈ domZ f).

We set p(j) = 0 for all other components of p. Recall the notation fp(x) = f(x) + ⟨p, x⟩ for x ∈ Zn.

Claim 1:

fp(x− χi∗ + χj) = fp(x)

(∀j ∈ supp−(x− y) ∪ {0} with x− χi∗ + χj ∈ domZ f), (2.20)

fp(y + χi∗ − χj) < fp(y) (∀j ∈ supp−(x− y) ∪ {0}). (2.21)

(Proof of Claim 1) The equality (2.20) is obvious from the definition of p. If x−χi∗ + j ∈ domZ f , then

the inequality (2.21) follows from (2.20) and

fp(x) + fp(y) > fp(x− χi∗ + χj) + fp(y + χi∗ − χj);

otherwise, (2.21) follows from the fact that fp(y + χi∗ − χj)− fp(y) = −ε or −∞ depending on whether

y + χi∗ − χj ∈ domZ f or not.

Claim 2: There exist i0 ∈ supp+(x−y)\{i∗} and j0 ∈ supp−(x−y)∪{0} such that y+χi0−χj0 ∈ domZ f

and

fp(y + χi0 − χj0) ≥ fp(y + χi0 − χj) (∀j ∈ supp−(x− y) ∪ {0}). (2.22)

(Proof of Claim 2) Since x(N) > y(N), Lemma 2.5 implies the inequality

f(x) + f(y) ≤ f(x− χi0) + f(y + χi0)

for some i0 ∈ supp+(x−y), from which follows that x−χi0 = x−χi0 +χ0 ∈ domZ f . Since (x, y) ∈ D, we
have i0 ̸= i∗, i.e., i0 ∈ supp+(x− y) \ {i∗}. Any j ∈ supp−(x− y) ∪ {0} that maximizes fp(y + χi0 − χj)

serves as j0.
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Claim 3: For y′ = y + χi0 − χj0 we have

fp(x) + fp(y
′) > fp(x− χi∗ + χj) + fp(y

′ + χi∗ − χj)

(∀j ∈ supp−(x− y′) ∪ {0}). (2.23)

(Proof of Claim 3) First note that i∗ ∈ supp+(x−y′) by the choice of y′. Since this inequality is obvious

when x−χi∗+χj ̸∈ domZ f , we assume that x−χi∗+χj ∈ domZ f . Then we have fp(x) = fp(x−χi∗+χj)

by (2.20). We also have

fp(y
′ + χi∗ − χj)

= [fp(y + χi0 + χi∗ − χj0 − χj) + fp(y)]− fp(y)

≤ max{fp(y + χi0 − χj0) + fp(y + χi∗ − χj),

fp(y + χi0 − χj) + fp(y + χi∗ − χj0)} − fp(y)

≤ fp(y + χi0 − χj0)

+ max{fp(y + χi∗ − χj)− fp(y), fp(y + χi∗ − χj0)− fp(y)}
< fp(y + χi0 − χj0) = fp(y

′),

where the first, second, and third inequalities follow from (M♮-EXC[Z]loc), (2.22), and (2.21), respectively.

Therefore, (2.23) holds. This completes the proof of Claim 3.

By x(N) > y(N) and y′(N) ≤ y(N) + 1 we have x(N) ≥ y′(N), in which the possibility of equality is

excluded. Indeed, if x(N) = y′(N), then (2.23) contradicts (2.13) in Lemma 2.6 for (x, y′, i∗). Therefore,

x(N) > y′(N) holds. Hence, we have (x, y′) ∈ D by Claim 3, a contradiction to the choice of (x, y), since

∥x− y′∥1 ≤ ∥x− y∥1 − 1. Therefore, D must be empty, which means that (P4[Z]) is satisfied. ⊓⊔

2.3 Proof of “(ii) =⇒ (iii)” in Theorem 2.1

We prove the implication “(ii) =⇒ (iii)” in Theorem 2.1 by showing that the conditions (P1[Z]) and

(P2[Z]) imply (P3[Z]) and (P4[Z]).
We first deal with the condition (P3[Z]).

Lemma 2.8 If f : Zn → R ∪ {−∞} satisfies (P1[Z]) and (P2[Z]), then it also satisfies (P3[Z]).

Proof To prove (P3[Z]) by contradiction, we assume that the set of pairs

D = {(x, y) | x, y ∈ domZ f, x(N) < y(N), ∃i∗ ∈ supp+(x− y) s.t.

f(x) + f(y) > f(x− χi∗ + χj) + f(y + χi∗ − χj)

(∀j ∈ supp−(x− y))}

is nonempty. Take a pair (x, y) ∈ D with ∥x− y∥1 minimum, and fix i∗ ∈ supp+(x− y) appearing in the

definition of D.
For a fixed ε > 0, consider a vector p ∈ Rn with each component p(j) (j ∈ N) given by

p(j) =


f(x)− f(x− χi∗ + j) (if j ∈ supp−(x− y), x− χi∗ + χj ∈ domZ f),

f(y + χi∗ − j)− f(y) + ε (if j ∈ supp−(x− y), x− χi∗ + χj ̸∈ domZ f,

y + χi∗ − χj ∈ domZ f),

0 (otherwise).

Recall the notation fp(x) = f(x) + ⟨p, x⟩ for x ∈ Zn.
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Claim 1:

fp(x− χi∗ + χj) = fp(x)

(∀j ∈ supp−(x− y) with x− χi∗ + χj ∈ domZ f), (2.24)

fp(y + χi∗ − χj) < fp(y) (∀j ∈ supp−(x− y)). (2.25)

(Proof of Claim 1) The equality (2.24) is obvious from the definition of p. If x − χi∗ + χj ∈ domZ f ,

then the inequality (2.25) follows from (2.24) and

fp(x) + fp(y) > fp(x− χi∗ + χj) + fp(y + χi∗ − χj).

If x−χi∗ +χj ̸∈ domZ f , (2.25) follows from the fact that fp(y+χi∗−χj)−fp(y) = −ε or −∞ depending

on whether y + χi∗ − χj ∈ domZ f or not.

Claim 2: There exists j0 ∈ supp−(x− y) such that y − χj0 ∈ domZ f and

fp(y − χj0) ≥ fp(y − χj) (∀j ∈ supp−(x− y)). (2.26)

(Proof of Claim 2) Since x(N) < y(N), the condition (P1[Z]) implies that there exists j ∈ supp−(x−y)

such that y − χj ∈ domZ f . Any j ∈ supp−(x− y) that maximizes fp(y − χj) serves as j0.

Claim 3: For y′ = y − χj0 we have

fp(x) + fp(y
′) > fp(x− χi∗ + χj) + fp(y

′ + χi∗ − χj)

(∀j ∈ supp−(x− y′)). (2.27)

(Proof of Claim 3) Since this inequality is obvious when x − χi∗ + χj ̸∈ domZ f , we assume that

x− χi∗ + χj ∈ domZ f . Then we have fp(x) = fp(x− χi∗ + χj) by (2.24). We also have

fp(y
′ + χi∗ − χj)

= [fp(y + χi∗ − χj0 − χj) + fp(y)]− fp(y)

≤ max{fp(y − χj0) + fp(y + χi∗ − χj),

fp(y − χj) + fp(y + χi∗ − χj0)} − fp(y)

≤ fp(y − χj0) + max{fp(y + χi∗ − χj)− fp(y), fp(y + χi∗ − χj0)− fp(y)}
< fp(y − χj0) = fp(y

′),

where the first inequality is due to (P1[Z]), and the second and third inequalities are by (2.26) and (2.25).

Hence follows (2.27), establishing Claim 3.

By x(N) < y(N) and y′(N) = y(N)− 1 we have x(N) ≤ y′(N), in which the possibility of equality is

excluded. Indeed, if x(N) = y′(N), then (2.27) contradicts (P2[Z]) for (x, y′, i∗). Therefore, x(N) < y′(N)

holds. Hence, we have (x, y′) ∈ D by Claim 3, a contradiction to the choice of (x, y) since ∥x − y′∥1 =

∥x− y∥1 − 1. Therefore, D must be empty, which means that (P3[Z]) is true. ⊓⊔

We next show that (P4[Z]) holds.

Lemma 2.9 If f : Zn → R ∪ {−∞} satisfies (P1[Z]) and (P2[Z]), then it also satisfies (P4[Z]).

Proof To prove (P4[Z]) by contradiction, we assume, to the contrary, that the set of pairs

D = {(x, y) | x, y ∈ domZ f, x(N) > y(N), ∃i∗ ∈ supp+(x− y) s.t.

f(x) + f(y) > f(x− χi∗ + χj) + f(y + χi∗ − χj)

(∀j ∈ supp−(x− y) ∪ {0})}
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is nonempty; recall that χ0 = (0, 0, . . . , 0). Take a pair (x, y) ∈ D with ∥x − y∥1 minimum, and fix

i∗ ∈ supp+(x− y) appearing in the definition of D.
For a fixed ε > 0, define p ∈ Rn as follows. The component p(i∗) is defined by

p(i∗) =


f(x− χi∗)− f(x) (if x− χi∗ ∈ domZ f),

f(y)− f(y + χi∗)− ε (if x− χi∗ ̸∈ domZ f, y + χi∗ ∈ domZ f),

0 (otherwise).

The component p(j) for each j ∈ supp−(x− y) is defined by

p(j) =


f(x)− f(x− χi∗ + χj) + p(i∗) (if x− χi∗ + χj ∈ domZ f),

f(y + χi∗ − χj)− f(y) + p(i∗) + ε

(if x− χi∗ + χj ̸∈ domZ f, y + χi∗ − χj ∈ domZ f),

0 (otherwise).

We set p(j) = 0 for all other components of p. Recall the notation fp(x) = f(x) + ⟨p, x⟩ for x ∈ Zn.

Claim 1:

fp(x− χi∗ + χj) = fp(x)

(∀j ∈ supp−(x− y) ∪ {0} with x− χi∗ + χj ∈ domZ f), (2.28)

fp(y + χi∗ − χj) < fp(y) (∀j ∈ supp−(x− y) ∪ {0}). (2.29)

(Proof of Claim 1) The equality (2.28) is obvious from the definition of p. If x − χi∗ + χj ∈ domZ f ,

then the inequality (2.29) follows from (2.28) and

fp(x) + fp(y) > fp(x− χi∗ + χj) + fp(y + χi∗ − χj);

otherwise, (2.29) follows from the fact that fp(y + χi∗ − χj)− fp(y) = −ε or −∞ depending on whether

y + χi∗ − χj ∈ domZ f or not.

Claim 2: There exist i0 ∈ supp+(x−y)\{i∗} and j0 ∈ supp−(x−y)∪{0} such that y+χi0−χj0 ∈ domZ f

and

fp(y + χi0 − χj0) ≥ fp(y + χi0 − χj) (∀j ∈ supp−(x− y) ∪ {0}). (2.30)

(Proof of Claim 2) Since x(N) > y(N), the condition (P1[Z]) applied to x and y implies the inequality

f(x) + f(y) ≤ f(x− χi0) + f(y + χi0)

for some i0 ∈ supp+(x−y), where we have i0 ̸= i∗ since (x, y) ∈ D. This inequality implies y+χi0 −χj ∈
domZ f with j = 0. Any j ∈ supp−(x− y) ∪ {0} that maximizes fp(y + χi0 − χj) serves as j0.

Claim 3: For y′ = y + χi0 − χj0 we have

fp(x) + fp(y
′) > fp(x− χi∗ + χj) + fp(y

′ + χi∗ − χj)

(∀j ∈ supp−(x− y′) ∪ {0}). (2.31)

(Proof of Claim 3) First note that i∗ ∈ supp+(x − y′) by the choice of y′. Since the inequality (2.31)

is obvious when x − χi∗ + χj ̸∈ domZ f , we assume that x − χi∗ + χj ∈ domZ f . Then we have fp(x) =

fp(x− χi∗ + χj) by (2.28). We also have

fp(y
′ + χi∗ − χj)

= [fp(y + χi0 + χi∗ − χj0 − χj) + fp(y)]− fp(y)

≤ max{fp(y + χi0 − χj0) + fp(y + χi∗ − χj),

fp(y + χi0 − χj) + fp(y + χi∗ − χj0)} − fp(y)

≤ fp(y + χi0 − χj0) + max{fp(y + χi∗ − χj)− fp(y), fp(y + χi∗ − χj0)− fp(y)}
< fp(y + χi0 − χj0) = fp(y

′),
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where the first inequality is by (P1[Z]) or (P2[Z]), and the second and third inequalities follow from (2.30)

and (2.29), respectively. Therefore, (2.31) holds. This completes the proof of Claim 3.

By x(N) > y(N) and y′(N) ≤ y(N) + 1 we have x(N) ≥ y′(N), in which the possibility of equality is

excluded. Indeed, if x(N) = y′(N), then (2.31) contradicts (P2[Z]) for (x, y′, i∗). Therefore, x(N) > y′(N)

holds. Hence, we have (x, y′) ∈ D by Claim 3, a contradiction to the choice of (x, y), since ∥x − y′∥1 ≤
∥x− y∥1 − 1. Therefore, D must be empty, which means that the condition (P4[Z]) is satisfied. ⊓⊔

3 Proof of Theorem 1.2

The polymatroid case in claim (ii) of Theorem 1.2 follows immediately from the general case (i) since

the condition (a) in (i) holds for an integral polymatroid; recall that an integral polymatroid is a set of

nonnegative vectors containing the zero vector 0. Hence, it suffices to prove the claim (i) of Theorem 1.2.

Let f : Zn → R∪{−∞} be a function such that domZ f is a nonempty set satisfying the condition (a)

or (b); we may assume that (a) holds since the other case can be proven in a similar way (alternatively, we

apply the case (a) to f(−x)). The implication “(M♮-EXC[Z]) =⇒ (P1[Z])” is already shown in Theorem

2.1. To prove the converse, we show below that the property (P1[Z]) implies M♮-convexity for domZ f

and (M♮-EXC[Z]loc) for f . Then, f is an M♮-concave function by Theorem 2.1.

[Proof of M♮-convexity for domZ f ] We use the fact that an M♮-convex set can be characterized by

the following exchange properties.

• ∀x, y ∈ S, x(N) < y(N), ∃j ∈ supp−(x− y) : x+ χj , y − χj ∈ S, (3.1)

• ∀x, y ∈ S, x(N) = y(N), ∀i ∈ supp+(x− y),

∃j ∈ supp−(x− y) : x− χi + χj , y + χi − χj ∈ S, (3.2)

• ∀x, y ∈ S, x(N) = y(N), ∀i ∈ supp+(x− y),

∃j ∈ supp−(x− y) : x− χi + χj ∈ S. (3.3)

Proposition 3.1 For a nonempty set S ⊆ Zn, the following conditions are equivalent:

(i) S is an M♮-convex set (i.e., satisfies (B♮-EXC[Z])),
(ii) S satisfies (3.1) and (3.2).

(iii) S satisfies (3.1) and (3.3).

Proof The equivalence between (i) and (ii) follows from Theorem 2.1 applied to the indicator function

δS . It is well known (see, e.g., [14, Prop. 4.2]) that a set S satisfies the condition (3.2) if and only if it

satisfies (3.3). ⊓⊔

We also use the following property of a set satisfying (3.1).

Proposition 3.2 If S ⊆ Zn satisfies (3.1), then for every x, y ∈ S with x ≤ y, it holds that [x, y] ⊆ S,

where [x, y] = {z ∈ Zn | x ≤ z ≤ y}.

Proof We prove the claim by induction on ∥x − y∥1. If ∥x − y∥1 = 0 then the claim holds. Assume

∥x− y∥1 > 0. Then, we have x(N) < y(N), and (3.1) shows the existence of j ∈ supp−(x− y) such that

x′ = x + χj ∈ S and y′ = y − χj ∈ S. Since ∥x′ − y∥1 < ∥x − y∥1 and ∥x − y′∥1 < ∥x − y∥1 hold, the

induction hypothesis implies that [x, y] ⊆ [x′, y] ∪ [x, y′] ⊆ S. ⊓⊔

By Proposition 3.1, the effective domain domZ f is an M♮-convex set if (and only if) it satisfies (3.1)

and (3.3). The condition (3.1) for domZ f follows immediately from (P1[Z]) for f . It follows from (3.1)

and Proposition 3.2 that

x, y ∈ domZ f, x ≤ y =⇒ [x, y] ⊆ domZ f. (3.4)
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We now prove (3.3) for domZ f . Let x, y ∈ domZ f be vectors with x(N) = y(N) and i ∈ supp+(x−y).

By the condition (a), there exists some z ∈ domZ f such that z ≤ x and z ≤ y. Since x(i) > y(i) ≥ z(i),

we have x′ = x− χi ∈ [z, x] ⊆ domZ f by (3.4). Since x′(N) < y(N) and x′, y ∈ domZ f , (P1[Z]) implies

that x′ + χj = x − χi + χj ∈ domZ f for some j ∈ supp−(x′ − y) ⊆ supp−(x − y). Thus, the condition

(3.3) holds for domZ f .

[Proof of (M♮-EXC[Z]loc) for f ] The properties (L1[Z]) and (L2[Z]) are immediate consequences of

(P1[Z]). The condition (L3[Z]) is derived as follows. We first consider the case where i, j, k, l are distinct.

To simplify the notation we assume that i = 1, j = 2, k = 3, l = 4, and write α1 = f(x + χ1),

α23 = f(x+ χ2 + χ3), and so on. Then, the condition (L3[Z]) can be rewritten as

α12 + α34 ≤ max{α13 + α24, α14 + α23}. (3.5)

We may assume α12 > −∞ and α34 > −∞ since otherwise the inequality (3.5) is trivially true. This

means that x+χ1 +χ2 ∈ domZ f and x+χ3 +χ4 ∈ domZ f . Then, we have some z ∈ domZ f with z ≤ x

by the condition (a), and therefore (3.4) implies that for each i ∈ {1, 2, 3, 4}, we have x + χi ∈ domZ f ,

i.e., αi > −∞.

To prove the inequality (3.5), assume, to the contrary, that

α12 + α34 > max{α13 + α24, α14 + α23}. (3.6)

By the property (L2[Z]) applied to x+χ1+χ2 and x+χ3, we may assume, by symmetry of 1 and 2, that

α12 + α3 ≤ α13 + α2. (3.7)

By (3.6) and (3.7), we have

α34 + α2 > α24 + α3.

On the other hand, by the condition (L2[Z]), we have

α34 + α2 ≤ max{α23 + α4, α24 + α3}. (3.8)

Hence

α34 + α2 ≤ α23 + α4. (3.9)

Similarly, it follows from (L2[Z]) that

α12 + α4 ≤ max{α14 + α2, α24 + α1}, (3.10)

α34 + α1 ≤ max{α13 + α4, α14 + α3}. (3.11)

In (3.10) we have

α12 + α4 ≤ α24 + α1 (3.12)

from (3.6) and (3.9). In (3.11) we have

α34 + α1 ≤ α14 + α3. (3.13)

from (3.6) and (3.12). By adding the inequalities (3.7), (3.9), (3.12), and (3.13) we obtain

2(α12 + α34) + (α1 + α2 + α3 + α4)

≤ (α13 + α24) + (α14 + α23) + (α1 + α2 + α3 + α4)

≤ 2max{α13 + α24, α14 + α23}+ (α1 + α2 + α3 + α4),

a contradiction to (3.6), and hence (L3[Z]) is shown for distinct i, j, k, l.

When i = j, the above proof still works with the understanding that α12 = f(x+χ1+χ2) = f(x+2χ1)

and α23 = f(x + χ1 + χ3), etc. Similarly in the case of k = l. Thus, (L3[Z]), and hence (M♮-EXC[Z]loc)
hold for f .

This concludes the proof of the claim (i) in Theorem 2.1.
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4 Concluding Remarks

4.1 Connection with M-concave Functions

The concept of M♮-concave function is originally introduced as a variant of M-concave function. A function

f : Zn → R ∪ {−∞} is said to be M-concave [14] if it satisfies the following exchange property:

(M-EXC[Z]) ∀x, y ∈ Zn, ∀i ∈ supp+(x− y) :

f(x) + f(y) ≤ max
j∈supp−(x−y)

{f(x− χi + χj) + f(y + χi − χj)}.

In its original definition, an M♮-concave function is a function f : Zn → R∪{−∞} such that the function

f̃ : Z× Zn → R ∪ {−∞} defined from f as

f̃(x0, x) =

{
f(x) (if x0 = −x(N)),

−∞ (otherwise (i.e., x0 ̸= −x(N)))
(x0 ∈ Z, x ∈ Zn) (4.1)

is an M-concave function.

It is easy to see that the condition (M-EXC[Z]) for f̃ is equivalent to the combination of the properties

(P1[Z]), (P2[Z]), (P3[Z]), and (P4[Z]) for f (i.e., the condition (iv) in Theorem 2.1). The following theorem

[16] shows the equivalence of these conditions and their equivalence to (M♮-EXC[Z]).

Theorem 4.1 ([16, Th. 4.2]) For a function f : Zn → R ∪ {−∞} with domZ f ̸= ∅, define a function

f̃ : Z× Zn → R ∪ {−∞} by (4.1). Then,

f̃ is M-concave ⇐⇒ f satisfies (P1[Z]), (P2[Z]), (P3[Z]), and (P4[Z])
⇐⇒ f satisfies (M♮-EXC[Z]).

It is known that the effective domain domZ f of an M-concave function is contained in a hyperplane of

the form {x ∈ Zn | x(N) = α} for some α ∈ Z. Hence, for an M-concave function, the condition (P1[Z])
is void, and (P2[Z]) follows immediately from (M-EXC[Z]), which, together with Theorem 1.1, implies

the known fact that the class of M-concave functions is (properly) contained in the class of M♮-concave

functions (see [14]).

On the other hand, Theorem 1.1 shows that the restriction of an M♮-concave function on a hyperplane

of the form {x ∈ Zn | x(N) = α} is an M-concave function [16, Th. 3.1].

4.2 Characterization by Local Exchange Properties

Theorem 2.1 contains the following characterization of M♮-concave function by the local exchange property

(M♮-EXC[Z]loc), which deserves to be stated as a separate theorem.

Theorem 4.2 A function f : Zn → R ∪ {−∞} with domZ f ̸= ∅ satisfies (M♮-EXC[Z]) if and only if

domZ f is an M♮-convex set and f satisfies (M♮-EXC[Z]loc).

This theorem has been known to experts, though not stated explicitly, as a corollary of the following

characterization of M-concave functions by a local exchange property. An M-convex set means an M♮-

convex set contained in a hyperplane of the form {x ∈ Zn | x(N) = α}.

Theorem 4.3 ([13, Th. 3.1]) A function f : Zn → R ∪ {−∞} is M-concave if and only if domZ f is

an M-convex set and f satisfies the property (L3[Z]).
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Proof (Proof of Theorem 4.2) For a function f : Zn → R∪{−∞}, we consider the function f̃ : Z×Zn →
R ∪ {−∞} given by (4.1). By Theorems 4.1 and 4.3, f satisfies (M♮-EXC[Z]) if and only if domZ f̃ is an

M-convex set and f̃ satisfies (L3[Z]). Note that the effective domain domZ f̃ is contained in the hyperplane

x0 + x(N) = 0. It is easy to see that the property (L3[Z]) for f̃ can be rewritten in terms of f as the

property (M♮-EXC[Z]loc), and it is known that domZ f̃ is an M-convex set if and only if domZ f is an

M♮-convex set [14, Sec. 4.7]. ⊓⊔

From Theorem 1.1 and the proof of Theorem 1.2 we see that the combination of local exchange

properties (L1[Z]) and (L2[Z]) characterizes M♮-concavity under a certain assumption of the effective

domain. This is stated in the following theorem, where the first part (i) is deeply related to [21, Th. 6.5

(i)] and the second part (ii) generalizes the results in [19, Th. 10] and in [21, Th. 6.5 (ii)] for the case

with domZ f ⊆ {0, 1}n.

Theorem 4.4 Let f : Zn → R ∪ {−∞} be a function with domZ f ̸= ∅.
(i) Suppose that domZ f satisfies one of the following conditions:

(a) ∀x, y ∈ domZ f , ∃z ∈ domZ f : z ≤ x, z ≤ y,

(b) ∀x, y ∈ domZ f , ∃z ∈ domZ f : z ≥ x, z ≥ y.

Then, f is M♮-concave if and only if f satisfies (L1[Z]) and (L2[Z]).
(ii) Suppose that domZ f is an integral polymatroid. Then, f is M♮-concave if and only if f satisfies

(L1[Z]) and (L2[Z]).

Proof The polymatroid case in claim (ii) follows immediately from the general case (i) since the condition

(a) in (i) holds for an integral polymatroid. Hence, it suffices to prove the claim (i). It is shown in the

proof of Theorem 1.2 in Section 3 that (L1[Z]) and (L2[Z]) imply (L3[Z]) if domZ f satisfies (a) or (b).

Thus, the claim (i) follows from Theorem 1.1. ⊓⊔

4.3 Local Exchange Property and Well-Layered Map

The local exchange property (L2[Z]) in (M♮-EXC[Z]loc) is deeply related with the concept of well-layered

map of Dress–Terhalle [3] (see also [18]).

For a set function f : 2N → R with dom f = 2N , we consider the following incremental greedy

algorithm:

Algorithm IncrementalGreedy

Step 0: Set k := 0, X0 := ∅.
Step 1: Let ik ∈ N be an element maximizing the value f(Xk + ik).

Step 2: Set Xk+1 := Xk + ik, k := k + 1.

If k > n, then stop; otherwise, go to Step 1. ⊓⊔

A set function f is called a well-layered map2 if the sets X0, X1, . . . , Xn generated by the algorithm

IncrementalGreedy applied to f satisfies the following condition:

Xk ∈ argmax{f(Y ) | Y ⊆ N, |Y | = k} (k = 0, 1, . . . , n).

It is shown [18, Sec. 3] that a set function f is a well-layered map if and only if f satisfies the following

local exchange property:

(L2[B]) f(X + i+ j) + f(X + k)

≤ max [f(X + i+ k) + f(X + j), f(X + j + k) + f(X + i)] ,

which is nothing but the property (L2[Z]) specialized to set functions.

2 In [3] the concept of well-layered map is defined for more general set functions for which the effective domain can be a

proper subset of 2N . We here restrict our attention to set functions f with dom f = 2N for simplicity of the description.
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